

Administrivia

Labs:

- You can do them on your laptop.
- Unix environment (Linux): an image will be provided with all the software pre-installed, with additional pieces as the labs progress.
- All tools are either open source, or written by my research group.

Lab writeup:

- One page executive summary for each lab
- Electronic submission

Administrivia

Late Policy: 0 (with the usual exceptions) If you contact me in advance, I can be flexible.

Collaboration:

- First few labs are individual; later labs can be in groups of two
- General discussions among students permitted
- Lab work is expected to be done separately

Yale Image: Comparing the second	Yale AVLSI Manohar EENG 426: Silicon Compilation Fall 2018 10 / 32
Administrivia	Topics
 Text: No textbook. General reference for chip design Weste/Harris, CMOS VLSI Design Mead/Conway, Introduction to VLSI Systems Course notes will be posted online Chip: "Tape-in" this semester for all students. "Tape-out" for students whose designs pass all final checks—hopefully everyone test chip + testing report in the Spring. 	 Transistors Switching networks Production rules Concurrency Syntax-directed translation High-level optimization Synthesis Datapath and function blocks Floorplanning Energy and delay Analog effects Leakage Metastability Voltage scaling System examples
Yale Image: Second se	Yale AVLSI Manohar EENG 426: Silicon Compilation Fall 2018 12 / 32

Design Flow	Asyr	nchronous Design
 or how to make a chip: Functional specification Architectural specification Circuits Abstract mask geometry Physical masks Chip 		 "Today, a chip goes to fab with 100 errors. It takes 8 runs to 'debug' it. It is finally shipped to the customer with 4 errors left. Most errors are timing errors." (Carver Mead, 1993) The design of the Pentium Pro required a total of 300 staff years for pre- and post-silicon validation. (Source: Albert Yu, Intel) Major design issues today: verification meeting timing budgets meeting power budgets
Yale	AVLSI E OQC	AVLSI イロトイクト モン・イクト モン つへで Manchar EENIC 426: Silicon Compilation ENI 2018 14 / 22
Asynchronous Design	Asyr	nchronous Design
 The main issue: design complexity Functional verification (synchronization, functionality) Meeting performance and power targets Interfaces Productivity ⇒ Use high level of abstraction ⇒ Treat physical details as parameters to be adjusted for 	r	A digital circuit is asynchronous when it does not use a clock to implement sequencing. A circuit is said to be delay insensitive (DI) when its correct operation is independent of the delays in gates and in the wires connecting the gates, assuming that the delays are finite and positive. Ideally, we would use delay-insensitive circuits to abstract away from all physical details.
nerformance not correctness		Alain J. Martin. "The limitations to delay insensitivity in asynchronous circuits." <i>Proc. ARVLSI</i> , 1990.
		Rajit Manohar and Yoram Moses. "The Eventual C-Element Theorem for Delay-Insensitive Asynchronous Circuits." <i>Proc. ASYNC</i> , May 2017.

Abstraction	Scaling
Mask GeometryAssumption:• all dimensions are multiples of a scaling parameter λ Scalable CMOS (SCMOS) design rules.When technology improves, adjust λ and reuse the design!This is no longer a good abstraction (more later)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Manohar EENG 426: Silicon Compilation Fall 2018 21 / 32	Yale Image: State of the st
Scaling	Scaling
Moore's law: # of transistors doubles every 18 monthsComplexity analogy: Seitz and Mead, 1979. Imagine a city where streets are wires with 200m between blocks.YearSpacing Chip sizeCity1963 $50\mu m$ $1mm$ town ($4km$) county ($100km$)1975 $10\mu m$ $5mm$ county ($100km$) state ($100km$)1985 $2\mu m$ $10mm$ state ($100km$) continent ($8000km$)Today: $0.010\mu m$ ($10nm$), $25mm$ chip size!	 Key observation: abstraction! Reuse: design tools, methods, circuits, abstract geometry as long as we understand how scaling works. Mainstream modern CMOS process: Gate: 0.014µm (14nm) Voltage: 0.9V FO1 inverter: < 1ps delay
Manohar EENG 426: Silicon Compilation Fall 2018 23 / 32	Yale AVLSI Manohar EENG 426: Silicon Compilation Fall 2018 24 / 32

