

Systematic approach	Guard strengthening
States in which $\neg r i \mapsto l o \uparrow$ has undesirable effective firings or could pcause interference（conflicting set）： $*[\bullet[l i] ; \bullet r o \uparrow ; \bullet[r i] ; r o \downarrow ;[\neg r i] ; l o \uparrow ;[\neg / i] ; \bullet / \circ \downarrow]$ States in which $\neg r i \mapsto l o \uparrow$ must fire： $*[[l i] ; r o \uparrow ;[r i] ; r o \downarrow ; \bullet[\neg r i] ; \bullet l o \uparrow ;[\neg / i] ; l o \downarrow]$ \Rightarrow select guard so that this is the case．	Consider $B \mapsto x \uparrow$ HSE： $\ldots ; x \uparrow ; \ldots ; x \downarrow ; \ldots ; x \uparrow ;$ firing set：set of states in which the rule could fire． （Determined by B ） disallowed set：set of states in which the production rule firing is not allowed because of interference or violation of HSE Conflicting set：intersection of firing and disallowed set，should be empty！ Yale
State variables	State variables
Sometimes it is not possible to identify each state uniquely using the variables we have in the handshaking expansion． $\ldots . . ; x o \uparrow ;[x i] ; x o \downarrow ;[\neg x i] ; \ldots$ Solution：introduce a new variable that has different values in the two indistinguishable states． There are several places where the assignment to the state variable can be inserted．	```Handshaking: vector (li, lo, ri, ro) *[\{X000\}[li]; \{1000\}ro个; \{10X1\}[ri]; \{1011\}rol; \{10X0\}[\(\neg\) ri]; \(\{1000\} / \mathrm{lo} \uparrow ;\{\mathrm{X} 100\}[\neg / i] ;\{0100\} / \circ \downarrow\)] After state-variable insertion: vector (\(x\), li, lo, ri, ro) \(x \downarrow ;\) *[\{0X000\}[li]; \{01000\}ro个; \{010X1\}[ri];\{01011\}×个; \{11011\}roฟ; \{110X0\}[\(\neg\) ri]; \{11000\}/o个; \{1X100\}[\(\neg / i]\); \(\{10100\} \times \downarrow ;\{00100\} / 0 \downarrow\)]```
Yale AVLSI	Yale AVISI

Production rule generation	Symmetrization
HSE: $\begin{aligned} & x \downarrow ; \\ & *[[l i] ; r o \uparrow ;[r i] ; x \uparrow ; r o \downarrow ;[\neg r i] ; l o \uparrow ;[\neg l i] ; x \downarrow ; l o \downarrow] \end{aligned}$ PRS: $\begin{aligned} \neg x \wedge l i & \mapsto r o \uparrow \\ r i & \mapsto x \uparrow \\ x & \mapsto r o \downarrow \\ x \wedge \neg r i & \mapsto l o \uparrow \\ \neg l i & \mapsto x \downarrow \\ \neg x & \mapsto l o \downarrow \end{aligned}$ Yale	$\begin{aligned} x \wedge \neg r i & \mapsto l o \uparrow \\ \neg x & \mapsto l o \downarrow \end{aligned}$ Turn into combinational logic: $\begin{aligned} & r i \vee \neg x \mapsto l o \downarrow \\ & \neg l i \vee x \mapsto r o \downarrow \end{aligned}$ Why is this legal?
Symmetrization	Operator reduction
Replacing a state-holding operator with a combinational one: $\begin{aligned} x \wedge \neg B & \mapsto z \uparrow \\ B & \mapsto z \downarrow \end{aligned}$ If B holds as a precondition of $\neg x$, we can replace the second rule with: $\neg x \vee B \mapsto z \downarrow$ We must ensure that no new effective firings have been introduced, i.e., $x \vee B \vee \neg z$ is invariant.	The last step consists of grouping together production rules into operators, and identifying standard operators in the production rule set. $\begin{aligned} l i \wedge r i & \mapsto x \uparrow \\ \neg r i \wedge \neg l i & \mapsto x \downarrow \\ \neg x \wedge l i & \mapsto r o \uparrow \\ \neg l i \vee x & \mapsto r o \downarrow \\ x \wedge \neg r i & \mapsto l o \uparrow \\ r i \vee \neg x & \mapsto l o \downarrow \end{aligned}$ Yale

