

Syntactic guards	Strengthening
Other execution orders may be possible! Example: $\neg ri \mapsto lo\uparrow$ $\neg li \mapsto lo\downarrow$ can fire in the initial state.	To prevent incorrect firings, we must reduce the number of states in which a production rule can fire by strengthening the guard. The guard must be strong enough to uniquely identify the state(s) of the handshaking expansion in which the rule must fire. Where can $ri \mapsto lo\uparrow$ fire?
Yale Image: Silicon Compilation Manohar EENG 426: Silicon Compilation Fall 2018 5 / 16	Yale Manohar EENG 426: Silicon Compilation Fall 2018 6 / 16
Systematic approach	Systematic approach
State of the circuit as a vector (li, lo, ri, ro) : *[{X000}[li]; {1000} $ro\uparrow$; {10X1}[ri]; {1011} $ro\downarrow$; {10X0}[$\neg ri$]; {1000} $lo\uparrow$; {X100}[$\neg li$]; {0100} $lo\downarrow$] Environment: *[$li\uparrow$; [lo]; $li\downarrow$; [$\neg lo$]] # *[[ro]; $ri\uparrow$; [$\neg ro$]; $ri\downarrow$]	States in which $\neg ri \mapsto lo\uparrow$ can fire: *[•[li]; • $ro\uparrow$; •[ri]; $ro\downarrow$; •[$\neg ri$]; • $lo\uparrow$; •[$\neg li$]; • $lo\downarrow$] States in which $\neg ri \mapsto lo\uparrow$ has effective firings: *[•[li]; • $ro\uparrow$; •[ri]; $ro\downarrow$; •[$\neg ri$]; • $lo\uparrow$; [$\neg li$]; $lo\downarrow$] States in which $\neg ri \mapsto lo\uparrow$ has undesirable effective firings: *[•[li]; • $ro\uparrow$; •[ri]; $ro\downarrow$; [$\neg ri$]; $lo\uparrow$; [$\neg li$]; $lo\downarrow$]
Yale	Yale

Systematic approach

Manoha

EENG 426: Silicon Compilation

```
Consider B \mapsto x^{\uparrow}
        States in which \neg ri \mapsto lo\uparrow has undesirable effective firings or
                                                                                                       HSE:
        could pcause interference (conflicting set):
                                                                                                              ...; x\uparrow; ...; x\downarrow; ...; x\uparrow;
            *[•[li]; •ro\uparrow; •[ri]; ro\downarrow; [\negri]; lo\uparrow; [\negli]; •lo\downarrow]
                                                                                                            firing set: set of states in which the rule could fire.
        States in which \neg ri \mapsto lo\uparrow must fire:
                                                                                                            (Determined by B)
                                                                                                            disallowed set: set of states in which the production rule
            *[[li]; ro\uparrow; [ri]; ro\downarrow; •[\negri]; •lo\uparrow; [\negli]; lo\downarrow]
                                                                                                            firing is not allowed because of interference or violation of
                                                                                                            HSE
        \Rightarrow select guard so that this is the case.
                                                                                                      Conflicting set: intersection of firing and disallowed set, should
                                                                                                       be empty!
Yale
                                                                                AVLSI
                                                                                              Yale
                                                                                                                                                                               AVLSI
                                                         ・ロト ・ 理 ト ・ ヨ ト ・
State variables
                                                                                              State variables
                                                                                                      Handshaking: vector (li, lo, ri, ro)
        Sometimes it is not possible to identify each state uniquely
                                                                                                       *[{X000}[li]; {1000}ro^{\dagger}; {10X1}[ri]; {1011}ro^{\downarrow};
        using the variables we have in the handshaking expansion.
                                                                                                         {10X0} [¬ri]; {1000} lo↑; {X100} [¬li]; {0100} lo↓
                                                                                                        ٦
        ...: xo\uparrow: [xi]: xo\downarrow: [\neg xi]: ...
                                                                                                       After state-variable insertion: vector (x, li, lo, ri, ro)
        Solution: introduce a new variable that has different values in
        the two indistinguishable states.
                                                                                                        x\downarrow;
                                                                                                       *[{0X000}[li]; {01000}ro^; {010X1}[ri]; {01011}x^;
        There are several places where the assignment to the state
                                                                                                         \{11011\}ro\downarrow; \{110X0\}[\negri]; \{11000\}lo\uparrow; \{1X100\}[\negli];
        variable can be inserted.
                                                                                                          \{10100\}x\downarrow;\{00100\}b\downarrow
                                                                                                        ٦
Yale
                                                                                AVLSI
                                                                                              Yale
                                                                                                                                                                               AVLSI
```

Guard strengthening

Manoha

EENG 426: Silicon Compilation

Production rule generation	Symmetrization
HSE: $\begin{array}{c} x\downarrow;\\ *[[li]; ro\uparrow; [ri]; x\uparrow; ro\downarrow; [\neg ri]; lo\uparrow; [\neg li]; x\downarrow; lo\downarrow] \end{array}$ PRS: $\begin{array}{c} \neg x \land li \mapsto ro\uparrow\\ ri \mapsto x\uparrow\\ x \mapsto ro\downarrow\\ x \land \neg ri \mapsto lo\uparrow\\ \neg li \mapsto x\downarrow\\ \neg x \mapsto lo\downarrow \end{array}$	$\begin{array}{l} x \land \neg ri \mapsto lo\uparrow \\ \neg x \mapsto lo\downarrow \end{array}$ Turn into combinational logic: $\begin{array}{l} ri \lor \neg x \mapsto lo\downarrow \\ \neg li \lor x \mapsto ro\downarrow \end{array}$ Why is this legal?
Manohar EENG 426: Silicon Compilation Fall 2018 13 / 16	Yale Manohar EENG 426: Silicon Compilation Fall 2018 14 / 16
Symmetrization	Operator reduction
Replacing a state-holding operator with a combinational one: $x \land \neg B \mapsto z\uparrow$ $B \mapsto z\downarrow$ If <i>B</i> holds as a precondition of $\neg x$, we can replace the second rule with: $\neg x \lor B \mapsto z\downarrow$ We must ensure that no new effective firings have been introduced, i.e., $x \lor B \lor \neg z$	The last step consists of grouping together production rules into operators, and identifying standard operators in the production rule set. $\begin{array}{c} li \wedge ri \mapsto x\uparrow\\ \neg ri \wedge \neg li \mapsto x\downarrow\\ \\ \neg x \wedge li \mapsto ro\uparrow\\ \neg li \lor x \mapsto ro\downarrow\\ \\ x \wedge \neg ri \mapsto lo\uparrow\\ ri \lor \neg x \mapsto lo\downarrow\\ \end{array}$
is invariant. Yale Manohar EENG 426: Silicon Compilation Fall 2018 15 / 16	Yale Image: Second system Manohar EENG 426: Silicon Compilation Fall 2018 16 / 16