
AVLSI

EENG 426/CPSC 459/ENAS 876
Silicon Compilation

Production rule synthesis

Computer Systems Lab

http://csl.yale.edu/~rajit

Fall 2018

Manohar EENG 426: Silicon Compilation Fall 2018 1 / 16

AVLSI

Convert HSE to PRS

Transforms a handshaking expansion into a set of production
rules.

state assignment

guard strengthening

symmetrization

May have to reshuffle to improve production rules!

Manohar EENG 426: Silicon Compilation Fall 2018 2 / 16

AVLSI

Convert HSE to PRS

CHP:

*[[L −→ R; L]]

Handshaking:
L: passive, since it is probed.
R: active, since matches passive L

*[[li]; ro↑; [ri]; ro↓; [¬ri]; lo↑; [¬li]; lo↓]

Manohar EENG 426: Silicon Compilation Fall 2018 3 / 16

AVLSI

Syntactic guards

We begin with a production rule set that is syntactically derived
from the original program:

li 7→ ro↑
ri 7→ ro↓
¬ri 7→ lo↑
¬li 7→ lo↓

Each action is guarded by the wait immediately before it.

If the handshaking expansion is deadlock-free, it is always
possible to execute the syntactic production rules in program
order.

Manohar EENG 426: Silicon Compilation Fall 2018 4 / 16

AVLSI

Syntactic guards

Other execution orders may be possible!

Example:

¬ri 7→ lo↑
¬li 7→ lo↓

can fire in the initial state.

Manohar EENG 426: Silicon Compilation Fall 2018 5 / 16

AVLSI

Strengthening

To prevent incorrect firings, we must reduce the number of
states in which a production rule can fire by strengthening the
guard.

The guard must be strong enough to uniquely identify the
state(s) of the handshaking expansion in which the rule must
fire.

Where can ri 7→ lo↑ fire?

Manohar EENG 426: Silicon Compilation Fall 2018 6 / 16

AVLSI

Systematic approach

State of the circuit as a vector (li , lo, ri , ro):

*[{X000}[li]; {1000}ro↑; {10X1}[ri]; {1011}ro↓;
{10X0}[¬ri]; {1000}lo↑; {X100}[¬li]; {0100}lo↓
]

Environment:

*[li↑; [lo]; li↓; [¬lo]]

‖
*[[ro]; ri↑; [¬ro]; ri↓]

Manohar EENG 426: Silicon Compilation Fall 2018 7 / 16

AVLSI

Systematic approach

States in which ¬ri 7→ lo↑ can fire:

*[•[li]; •ro↑; •[ri]; ro↓; •[¬ri]; •lo↑; •[¬li]; •lo↓]

States in which ¬ri 7→ lo↑ has effective firings:

*[•[li]; •ro↑; •[ri]; ro↓; •[¬ri]; •lo↑; [¬li]; lo↓]

States in which ¬ri 7→ lo↑ has undesirable effective firings:

*[•[li]; •ro↑; •[ri]; ro↓; [¬ri]; lo↑; [¬li]; lo↓]

Manohar EENG 426: Silicon Compilation Fall 2018 8 / 16

AVLSI

Systematic approach

States in which ¬ri 7→ lo↑ has undesirable effective firings or
could pcause interference (conflicting set):

*[•[li]; •ro↑; •[ri]; ro↓; [¬ri]; lo↑; [¬li]; •lo↓]

States in which ¬ri 7→ lo↑ must fire:

*[[li]; ro↑; [ri]; ro↓; •[¬ri]; •lo↑; [¬li]; lo↓]

⇒ select guard so that this is the case.

Manohar EENG 426: Silicon Compilation Fall 2018 9 / 16

AVLSI

Guard strengthening

Consider B 7→ x↑
HSE:

...; x↑; ...; x↓; ...; x↑;

firing set: set of states in which the rule could fire.
(Determined by B)

disallowed set: set of states in which the production rule
firing is not allowed because of interference or violation of
HSE

Conflicting set: intersection of firing and disallowed set, should
be empty!

Manohar EENG 426: Silicon Compilation Fall 2018 10 / 16

AVLSI

State variables

Sometimes it is not possible to identify each state uniquely
using the variables we have in the handshaking expansion.

....; xo↑; [xi]; xo↓; [¬xi]; ...

Solution: introduce a new variable that has different values in
the two indistinguishable states.

There are several places where the assignment to the state
variable can be inserted.

Manohar EENG 426: Silicon Compilation Fall 2018 11 / 16

AVLSI

State variables

Handshaking: vector (li , lo, ri , ro)

*[{X000}[li]; {1000}ro↑; {10X1}[ri]; {1011}ro↓;
{10X0}[¬ri]; {1000}lo↑; {X100}[¬li]; {0100}lo↓
]

After state-variable insertion: vector (x , li , lo, ri , ro)

x↓;
*[{0X000}[li]; {01000}ro↑; {010X1}[ri]; {01011}x↑;
{11011}ro↓; {110X0}[¬ri]; {11000}lo↑; {1X100}[¬li];
{10100}x↓;{00100}lo↓
]

Manohar EENG 426: Silicon Compilation Fall 2018 12 / 16

AVLSI

Production rule generation

HSE:

x↓;
*[[li]; ro↑; [ri]; x↑; ro↓; [¬ri]; lo↑; [¬li]; x↓; lo↓]

PRS:

¬x ∧ li 7→ ro↑
ri 7→ x↑
x 7→ ro↓

x ∧ ¬ri 7→ lo↑
¬li 7→ x↓
¬x 7→ lo↓

Manohar EENG 426: Silicon Compilation Fall 2018 13 / 16

AVLSI

Symmetrization

x ∧ ¬ri 7→ lo↑
¬x 7→ lo↓

Turn into combinational logic:

ri ∨ ¬x 7→ lo↓
¬li ∨ x 7→ ro↓

Why is this legal?

Manohar EENG 426: Silicon Compilation Fall 2018 14 / 16

AVLSI

Symmetrization

Replacing a state-holding operator with a combinational one:

x ∧ ¬B 7→ z↑
B 7→ z↓

If B holds as a precondition of ¬x , we can replace the second
rule with:

¬x∨B 7→ z↓

We must ensure that no new effective firings have been
introduced, i.e.,

x ∨ B ∨ ¬z

is invariant.

Manohar EENG 426: Silicon Compilation Fall 2018 15 / 16

AVLSI

Operator reduction

The last step consists of grouping together production rules into
operators, and identifying standard operators in the production
rule set.

li ∧ ri 7→ x↑
¬ri ∧ ¬li 7→ x↓

¬x ∧ li 7→ ro↑
¬li ∨ x 7→ ro↓

x ∧ ¬ri 7→ lo↑
ri ∨ ¬x 7→ lo↓

Manohar EENG 426: Silicon Compilation Fall 2018 16 / 16

