

Arbiters

The signals will separate eventually; however, we don't know how long it will take. It is impossible to have a circuit that decides which input switched first in bounded time.

$$
\operatorname{Pr}[t i m e \geq t]=A e^{-t / \tau_{0}}
$$

Note: the average time taken for signals to separate is bounded.
Since our circuits are asynchronous, we can wait until the signals separate.

Yale	
Arbitration	
Simple example:$\begin{gathered} *[[\bar{A} \longrightarrow X ; A \\ \mid \bar{B} \longrightarrow Y ; B \\]] \end{gathered}$	
Handshaking:$\begin{aligned} & \text { *[Lai } \longrightarrow x o \uparrow ;[x i] ; a o \uparrow ;[\neg a i] ; x o \downarrow ;[\neg x i] ; a o \downarrow \\ & \quad \mid b i \longrightarrow y o \uparrow ;[y i] ; b o \uparrow ;[\neg i] ; y o \downarrow ;[\neg y i] ; b o \downarrow \\ &]] \end{aligned}$	

Arbiters

The output of the cross-coupled NAND gate is connected to a filter circuit that waits for the signals to be separated by a threshold voltage.

(Note that the CMOS circuit is indeed weakly fair!)
Yale
Manohar
EENG 426: Slilicon Compilation

Arbitration

Introduce new variables u and v :

$$
\left.\begin{array}{l}
*[[\text { [ai } \longrightarrow u \uparrow ;[u] ; x o \uparrow ;[x i] ; a o \uparrow ; \\
{[\neg a i] ; u \downarrow ;[\neg u] ; x o \downarrow ;[\neg x i] ; a o \downarrow}
\end{array}\right] \begin{aligned}
& \text { |bi } \longrightarrow v \uparrow ;[v] ; y o \uparrow ;[y i] ; b o \uparrow ; \\
& \quad[\neg b i] ; v \downarrow ;[\neg v] ; y o \downarrow ;[\neg y i] ; b o \downarrow
\end{aligned}
$$

The idea is to introduce the output of the arbiter into the handshaking expansion. The next step is to decompose the arbiter out of the handshaking expansion.

Yale
Process factorization
Idea: "factor out" an arbiter!
After process factorization:
$*[[a i \longrightarrow u \uparrow ;[\neg a i] ; u \downarrow$
$\mid b i \longrightarrow v \uparrow ;[\neg i] ; v \downarrow$
$]]$
$\|$

$*[[u \longrightarrow x o \uparrow ;[x i] ; a o \uparrow ;[\neg u] ; x o \downarrow ;[\neg x i] ; a o \downarrow$
$0 \vee \longrightarrow y o \uparrow ;[y i] ; b o \uparrow ;[\neg v] ; y o \downarrow ;[\neg y i] ; b o \downarrow$
$]]$

Process factorization

Production rules:
$\neg b o \wedge u \mapsto x o \uparrow$

$$
x i \mapsto a o \uparrow
$$

$(b o \vee) \neg u \mapsto x o \downarrow$
$\neg x i \mapsto a \circ \downarrow$
$\neg a o \wedge v \mapsto y o \uparrow$
$y i \mapsto b o \uparrow$
$(a o \vee) \neg v \mapsto y o \downarrow$
$\neg y i \mapsto b o \downarrow$

Yale
Manohar
EENG 426: Silicon Compilation

Arbitration with multiplexing
CHP Program:

$$
\begin{gathered}
*[[\bar{A} \longrightarrow S ; A \\
\quad \mid \bar{B} \longrightarrow S ; B \\
]]
\end{gathered}
$$

Decomposition:

$$
\begin{gathered}
*[[\bar{A} \longrightarrow P ; A \\
\mid \bar{B} \longrightarrow Q ; B \\
]] \\
\| \\
*[[\bar{P} \longrightarrow S ; P \\
\quad[\bar{Q} \longrightarrow S ; Q \\
]]
\end{gathered}
$$

Yale

