

Capacitors	Resistors		
Capacitance $C=\epsilon A / d$ When we draw geometry, we control A So for us $C=(\epsilon / d) A \approx 0.1 f F / \square$ Series/parallel combination of capacitors: - $C_{\\|}=C_{1}+C_{2}$ - $\frac{1}{C_{;}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$ Yale AVLSI	- $I=V / R$, or $I=G V$, or $V=I R$ Units: Ohms (Ω) Order of magnitude in $0.5 \mu \mathrm{~m}$ CMOS: $0.1 \Omega /$ Resistance $R=\rho \frac{l}{A}$ $A=w \times t, t$: thickness of wire So for us $R=(\rho / t) \frac{l}{w}$ $\frac{1}{R_{\\|}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad R_{;}=R_{1}+R_{2}$ Yale		
Transistors	Simplified transistor equations		
drain source - Green: "ndiffusion" ("ndiff") - Brown: "pdiffusion" ("pdiff") - Red: "polysilicon" ("poly") The intersection defines the gate region. - width W, length L	$\begin{gathered} V_{G S}-V_{T} \leq 0<V_{D S} \text { (subthreshold): } \\ \quad I_{D S} \approx 0 \\ 0<V_{G S}-V_{T}<V_{D S} \text { (saturation): } \\ I_{D S}=\mu C_{o x} \frac{W}{L} \frac{\left(V_{G S}-V_{T}\right)^{2}}{2} \\ 0<V_{D S}<V_{G S}-V_{T} \text { (linear): } \\ I_{D S}=\mu C_{o x} \frac{W}{L}\left[\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}^{2} / 2\right] \end{gathered}$ Yale AVLSI		

Switching networks

In general, we have something like:

We only use pFETs in the pull-up and nFETs in the pull-down.

CMOS is said to be "inverting."
Given a one-stage circuit \mathcal{C} computing

$$
y=\mathcal{C}(\mathbf{x})
$$

where \mathbf{x} is a Boolean vector of inputs, we know that if any component of \mathbf{x} changes from false to true, the output changes from true to false or remains unchanged.

Why?

Yale

Yale $\begin{array}{lll} & & \text { AVLSI } \\ \text { EENG 426: Silicon Compilation } & \text { Fall } 2018 & 14 / 32\end{array}$

Production rules

What can we say about a CMOS gate represented by a production rule?

- $x \wedge y \mapsto u \uparrow$
- $x \wedge y \mapsto u \downarrow$
- $\neg(a \vee b) \mapsto c \uparrow$

Yale

To restore the pass gate MUX signals:

Can we simplify this?

Yale

Manohar
EENG 426: Silicon Compilation
AVLSI
Fall 201

Production rules

A CMOS gate is of the form:

$$
B^{+} \mapsto z \uparrow
$$

$$
B^{-} \mapsto z \downarrow
$$

We require: $\neg\left(B^{+} \wedge B^{-}\right)$
Gates come in two flavors:

- $B^{+} \vee B^{-} \Rightarrow$ the gate is combinational or static (This is the same as $B^{+}=\neg B^{-}$)
- $B^{+} \neq \neg B^{-} \Rightarrow$ the gate is state-holding or dynamic

Yale

Yale

Production rules

$$
\begin{aligned}
b_{1} \vee \neg b_{2} \wedge \neg-z & \mapsto z \uparrow \\
b_{2} \vee \neg b_{1} \wedge _z & \mapsto z \downarrow
\end{aligned}
$$

Yale

Manohar
EENG 426: Silicon Compilation

Production rules

An execution of $G \mapsto S$ is an unbounded sequence of firings.

- If G is true, the firing amounts to executing S
- If G is false, the firing amounts to a skip
- If a firing changes the state, it is effective; otherwise it is vacuous

The execution of a production rule set:

- the parallel composition of the individual production rules in the set
- assumption is "weak fairness": a specific production rule will get a chance to fire eventually

Yale

Production rules

If all production rules in a set are stable, then their execution is equivalent to the following:

- Repeat the following steps forever:
(1) Pick one production rule (in a weakly fair fashion) from the production rule set;
(2) Fire the selected rule

Yale
AVLSI

Yale

