

Composition	Control structures: selection
Sequential Composition: $S_{1} ; S_{2}$ Execute statement 1. Then execute statement 2.	Selection Statement: Used to choose between different alternatives, like an IF statement. Deterministic selection: $\begin{aligned} & {\left[G_{1} \longrightarrow S_{1}\right.} \\ & \square G_{2} \longrightarrow S_{2} \\ & \square \ldots \\ & \square G_{n} \longrightarrow S_{n} \\ &] \end{aligned}$ Wait for one G_{i} to be true. Execute corresponding S_{i}. Restriction: Atmost one guard can be true.
Control structures: selection	Examples
Non-deterministic selection Statement: $\begin{aligned} & {\left[G_{1} \longrightarrow S_{1}\right.} \\ & \mid G_{2} \longrightarrow S_{2} \\ & \mid \ldots \\ & \mid G_{n} \longrightarrow S_{n} \\ &] \end{aligned}$ More than one G_{i} can be true. Pick one. Standard abbreviation: $[B] \equiv[B \longrightarrow \mathbf{s k i p}]$	What do the following programs do? $\begin{aligned} & {[\text { true } \longrightarrow x \uparrow} \\ & \text { \|true } \longrightarrow x \downarrow \\ &] \end{aligned} \begin{aligned} & {[x i] ; x o \uparrow ;[\neg x i] ; x o \downarrow} \\ & {[x=1 \longrightarrow y:=3} \\ & \square x=2 \longrightarrow y:=5 \\ & {[x=3 \longrightarrow y:=7} \\ &] \end{aligned}$

Control structures: loops	Control structures: loops	
Loops: Repeat actions while conditions are satisfied. A generalization of the WHILE loop. Deterministic loop: $\begin{aligned} & *\left[G_{1} \longrightarrow S_{1}\right. \\ & 0 G_{2} \longrightarrow S_{2} \\ & \square \ldots \\ & 0 G_{n} \longrightarrow S_{n} \\ &] \end{aligned}$ At most one G_{i} can be true. Repeatedly execute until all guards are false.	Non-deterministic loop: $\begin{aligned} & *\left[G_{1} \longrightarrow S_{1}\right. \\ & \mid G_{2} \longrightarrow S_{2} \\ & \mid \ldots \\ & \mid G_{n} \longrightarrow S_{n} \\ &] \end{aligned}$ More than one G_{i} can be true. Standard abbreviation: $*[S] \equiv *[\text { true } \longrightarrow S]$	
Examples	Concurrency	
Add integers from one to ten: $\begin{aligned} & i:=1 ; \\ & \text { sum }:=0 ; \\ & *[i \leq 10 \longrightarrow \text { sum }:=\operatorname{sum}+i ; i:=i+1] \end{aligned}$ Euclid's algorithm: $\begin{aligned} & \{X>0 \wedge Y>0\} \\ & x, y:=X, Y ; \\ & *[x>y \longrightarrow x:=x-y \\ & \square x<y \longrightarrow y:=y-x \\ &] \\ & \{x=\operatorname{gcd}(X, Y)\} \end{aligned}$		
Yale AVLS!	Yale	AVLSI

