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Abstract— We present a summary of the state-of-the art
in asynchronous VLSI and architecture. We present sev-
eral reasons for adopting an asynchronous approach to com-
puter architecture, including lower design complexity, re-
duced energy-complexity, and average-case performance. In
particular, we describe why formal synthesis techniques
for asynchronous design dramatically reduce design time,
and present some examples that describe how asynchronous
techniques can lead to a reduction in the energy-complexity
of VLSI systems.
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I. INTRODUCTION

The past decade has seen tremendous progress in the
design of computer systems. Just ten years ago any ma-
jor computing task required expensive, custom hardware
consisting of high-end processors connected via custom in-
terconnects. Today, it is possible to network a cluster of
PCs with commodity interconnect running a free operating
system and use it for most major computing tasks. This
dramatic improvement in both price and performance has
been due to improvements in both processor design and
understanding of interconnect architectures.

Today we are faced with new challenges in designing
high-performance architectures. The power dissipation in
modern processors is becoming a cause for concern. The
Alpha 21164 dissipates about 50W of power operating at
3.3V [1], and the new Alpha 21264 will dissipate an es-
timated 72W of power at 2.0V [5]. Reduced power con-
sumption is also becoming more important as we embed
computing devices in portable electronic devices and ap-
pliances. Every bit of saved power extends the battery life
for portable devices.

The time and staff-hours taken to validate a modern
processor design project are also growing. In 1993, the
validation of the R4000 processor took about 25% of the
design time [7]. More recently, pre and post silicon val-
idation of the Pentium Pro processor required a total of
300 staff-years [37]. The infamous Pentium division bug
and FOOF bug shows that current design and hardware ver-
ification methods are inadequate. As technology evolves
toward smaller feature sizes and larger die areas for chips,
the complexity of designs continues to grow—making the
task of design validation even more difficult.

We present the case for asynchronous computer architec-
ture as a design methodology that addresses these issues.
In an asynchronous system, the time taken by an operation
is not artificially synchronized to a global clock signal. As
a result, adopting an asynchronous methodology permits
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us to explore a larger, richer design space. The techniques
we describe address the following challenges facing modern
computer architects:

Design Complexity. Verification and design validation
is becoming a larger and larger fraction of the design cycle.
We believe that the formal synthesis approach to system
design is the way to ensure correctness of hardware on first
silicon. Asynchronous design lends itself to this method-
ology, because we can separate correctness and timing is-
sues during the design. Asynchronous architectures are
highly modular, and therefore can be designed in reusable
components—components for which we can reuse correct-
ness proofs as well.

Energy Complexity. The parts of an asynchronous cir-
cuit that do not contribute to the computation being per-
formed have no switching activity. As a result, asyn-
chronous circuits have an advantage in terms of power
consumption when compared with clocked systems. We
describe the techniques available for high-level power esti-
mation in asynchronous systems, and how one can estimate
the energy-complexity of an asynchronous computation.

Average-Case Performance. Asynchronous systems
exhibit average-case timing behavior as opposed to the
clocked systems that have to account for worst-case tim-
ing. We believe that it is possible to trade performance
for energy per operation, and we show some examples of
how joint energy/performance optimization can be used to
explore this tradeoff.

In this paper, we describe asynchronous computations
and architectures using a notation known as CHP (Com-
municating Hardware Processes), a language that is based
on Hoare’s CSP [8] and Dijkstra’s guarded command no-
tation [4]. A summary of the notation is provided in the
appendix. This notation and the formal synthesis method-
ology we describe was first proposed by Martin [21]. In
this paper, we use “asynchronous circuits” to mean cir-
cuits designed using Martin’s formal synthesis approach.
The synthesis results in quasi delay-insensitive (QDI) cir-
cuits. QDI circuits are defined to be those that function
correctly under the assumption that gates and wires have
arbitrary finite delay, except for some special wires known
as isochronic forks [22].

II. DESIGN COMPLEXITY

A natural approach to managing design complexity is
to describe VLSI computations using a high-level lan-
guage and then synthesizing VLSI implementations from
the high-level description. Adopting a high-level synthe-
sis approach requires finding the correct balance between
physical considerations (transistor delay, wire delay, analog



considerations, etc) and logical considerations (data haz-
ards, pipeline structure, etc). Asynchronous QDI VLSI
circuits [22] are an ideal match for high-level synthesis ap-
proaches, because of the separation of performance issues
from correctness issues. In this section we elaborate on the
state-of-the-art in the design of provably correct complex
asynchronous VLSI systems. We would like to emphasize
that the approach we advocate has been repeatedly vali-
dated, and in each case the performance of our final im-
plementations have been beyond our initial expectations.
Two major designs that have been completed using this
approach include the first asynchronous microprocessor de-
signed in 1989 by Martin, Burns, Lee, et al. [19], and an
asynchronous MIPS processor designed by Martin, Lines,
Manohar, Nystrom et al. [20] Both processors were func-
tional on first silicon.

Formal Synthesis. The formal synthesis approach to
asynchronous VLSI begins with a simple, sequential de-
scription of the specification to be implemented. The end
result of the synthesis is a highly complex concurrent sys-
tem that is a valid implementation of the original sequential
specification. The transformation of a sequential specifica-
tion to the final concurrent system is done using semantics-
preserving transformations; therefore, if we know that the
original sequential specification is correct, the final concur-
rent implementation is correct as well [21], [23].

When a synthesis-driven design methodology is used, the
only verification necessary is to ensure that the rules that
justify the transformations used during synthesis were cor-
rectly applied. This tends to be significantly less complex
than complete verification because the set of rules is small,
and most rules are syntactic. In addition, synthesis tech-
niques preserve intermediate steps thereby simplifying any
automated validation methods.

A. The First Asynchronous Microprocessor

The first asynchronous microprocessor was designed by
Martin, Burns, Lee, et al. in 1989 [19]. It was a 16-bit inte-
ger processor with a load/store architecture. The sequen-
tial high-level description of the processor was a single page
of CHP, which meant that the high-level description was
easy to check. The final processor had many concurrently
operating parts that implemented the original, simple se-
quential specification. The processor was fabricated in a
1.6pum CMOS process, and then refabricated in a 1.2um
CMOS process. The same design was also fabricated in
GaAs. All three designs were functional on first “silicon.”

Some of the transformations used in the design of the
first asynchronous microprocessor are described in the ap-
pendix. The transformations shown together with simi-
lar transformations for control/data decomposition and a
special transformation for register file locking were all the
transformations necessary to design the first asynchronous
microprocessor [19]. The transformations all share the fol-
lowing properties: they are simple, can be applied locally,
and are purely syntactic making them easy to check.

While the first asynchronous microprocessor was rela-
tively simple, it is a testament to the design methodology

ET in
107157 . s/0p

008 9000 ©0 © o

Fig. 1. Measured joint energy/cycle time metrics for the first asyn-
chronous microprocessor over a range of voltages.

that it was completed in 6 months from the start of the
project to tape-out by a small group. Figure 1 shows the
layout and the lab results from the first asynchronous mi-
croprocessor designed at Caltech. It shows the measured
E7? and Er figures over a range of voltages, where E is
the energy per operation and 7 is the cycle time.

Testability. As part of the first microprocessor project,
techniques were also developed for testing asynchronous
circuits. By testing we mean fault testing of a chip to
check for fabrication errors. It has been shown that every
output stuck-at fault is fully testable in an asynchronous
QDI circuit [24]. Contrary to popular belief, input stuck-at
faults in asynchronous circuits need not be fully testable.
In particular, input stuck-at faults on isochronic forks may
not be testable. These stuck-at faults can be made testable
by introducing additional test points [24]. Hazewindus has
developed techniques for the identification of gates in an
asynchronous QDI design that are not fully testable and
for inserting test points and a test queue that makes the
design testable [11].

B. The MiniMIPS Asynchronous Processor

The MiniMIPS processor is a 32-bit integer processor
that implements most of the MIPS-I ISA. The processor
has on chip caches and implements precise exceptions. The
processor was fabricated in HP’s 0.5um CMOS process
available through MOSIS, and was functional on first sili-
con.

The MiniMIPS project provided significant extensions to
Martin’s design methodology for asynchronous VLSI sys-
tems by providing a semantic framework for analyzing the
correctness of highly pipelined asynchronous systems [20].
The main problem with the transformations outlined in the
appendix is that they do not decouple the execution of one
process from another. In the example with the counter
shown in the appendix, for instance, an increment request
forces both the counter and its environment to synchronize,
even though the actual increment operation can be over-
lapped with other parts of the computation. Providing
formal transformations that justify the decoupling of such
operations using the new semantic framework was one of
the contributions of the MiniMIPS project.

Slack Elasticity and Projection. The augmented de-
sign methodology is based on a concept known as slack elas-
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ticity [16]. The analysis provides conditions under which
powerful transformations can be applied to improve the
performance of an asynchronous VLSI system while pre-
serving correctness. We created a general-purpose synthe-
sis technique using the slack elasticity framework known as
projection [15]. The following examples illustrate some of
the important features of projection.

EXAMPLE: Consider the process *[L?z; Rlxz; P7y; Qly].
This process repeated does the following: receive value on
channel L into variable z; send this value out on R; receive
value on channel P into variable y; send this value out on
Q. The projection transformation decomposes this process
into two that are not synchronized:

[ L?7z;R!z 1 || *[ P?y; Qly ]
|

While this may appear to be a straightforward change
to the computation, this transformation does not preserve
correctness in general. It may introduce deadlock, or even
cause a circuit to malfunction. The slack elasticity frame-
work provides sufficient conditions under which such trans-
formations can be applied [15]. These conditions were gen-
eral enough to encompass the entire MiniMIPS processor
design [20].

MiniMIPS Pipeline Structure. Figure 2 shows the
pipeline structure of the MiniMIPS processor. Each block
corresponds to two to six asynchronous pipeline stages [20].
The arrows correspond to flow of information from one con-
current part to another. The instruction fetch IF fetches
the next instruction from the instruction cache MEM and
sends it to DE to be decoded. DE then issues the in-
struction to an execution unit that is capable of executing
the instruction. Since the MiniMIPS was designed to be
compared to an R3000, the decode DE only issues one
instruction per cycle. (Extending the decode to support
multiple issue would be a simple task, and would not af-
fect the rest of the execution pipeline.) However, the Min-
iMIPS pipeline structure can execute instructions out-of-
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Fig. 3. The MiniMIPS writeback.

order with respect to each other because instructions that
take different times to execute are not artificially synchro-
nized by a clock signal. This is achieved by providing two
write ports to the register file. As a result, an instruction
that takes longer to execute can write its results back after
a later instruction. The example in Figure 2 shows five
pending instructions in the pipeline (the instructions are
numbered sequentially, with lower numbers meaning ear-
lier instructions). Note that instruction number 2 and 4
have already completed and written their results back to
the register file even though earlier instructions have not
completed execution. The architecture has some of the
benefits of an out-of-order processor without the complex
instruction issue logic present in modern clocked proces-
sors such as the R10000 [36]. The MiniMIPS is also the
first implementation of an asynchronous microprocessor to
implement precise exceptions in the presence of multiple
function units.

Figure 3 shows an example where we used projection to
transform the writeback process WB in the MiniMIPS pro-
cessor into the concurrent composition of four processes.
An interesting feature of the transformation illustrated by
Figure 3 is that the resulting system can process multiple
data items concurrently without violating the correctness
of the processor. HSPICE measurements showed that the
new system had a cycle time of 2.9ns in HP’s 0.5um pro-
cess, as opposed to a monolithic writeback which had an
estimated cycle time of closer to 9ns. We could apply this
transformation because the MiniMIPS was a slack elastic
system [20].

Physical v/s Logical Pipelining. Asynchronous sys-
tems permit the separation between physical pipelining and
logical pipelining. In a clocked system, the introduction of
a new physical pipeline stage typically results in additional
data hazards; the introduction of an asynchronous pipeline
stage does not have this effect [16]. Architectural features
such as branch delay slots that we consider to be the result
of logical pipelining (since they change the ISA) must be
embedded in the specification of the initial asynchronous
system to be present in the final, concurrent version. This
separation of physical and logical pipelining is what per-



mits the separation of correctness concerns from perfor-
mance concerns. Physical asynchronous pipeline stages can
be inserted or removed (almost always [16]) to improve the
throughput of a computation without affecting its correct-
ness. The ratio between physical and logical pipeline stages
is dictated by performance considerations. Performance
analysis frameworks can be used to accurately determine
this ratio [3].

Test Results. Figure 4 show the physical layout and
the lab results for the MiniMIPS processor. The processor
has over 2M transistors, and the physical design was full-
custom. The results are for HP’s 0.5um process (the 1998
version) available through MOSIS. Little time was spent on
processor verification, since the design methodology guar-
anteed correctness by construction. No logical verification
was required; the only verification necessary was to elim-
inate elementary errors such as crossed wires, mislabeled
nodes, etc. The final concurrent MiniMIPS processor de-
sign contains over 10,000 interacting concurrent processes.
The design was tractable only because of the formal, mod-
ular, design methodology used.

When we received first silicon from MOSIS, we observed
that the performance of the processor was lower than that
predicted by HSPICE. We discovered a long polysilicon
wire with several resistive contacts that had escaped un-
noticed during circuit simulations. It is a testament to the
design methodology that the processor functioned correctly
even though a few processes in the complete concurrent
system ran slower than anticipated. A second problem was
that HP’s proprietary parameters for the process did not
match the measured process parameters (in particular, the
threshold voltages were higher than those specified by the
process parameters). This problem did not affect correct-
ness either. In summary, in spite of problems that would
have caused other design methodologies to result in mal-
functioning chips, the MiniMIPS processor was correct on
first silicon.

III. ENERGY COMPLEXITY

The parts of an asynchronous circuit that do not con-
tribute to the computation have no switching activity. Asa
result, those circuit components do not dissipate any power
other than that due to leakage currents. In addition, the
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Fig. 4. Measured joint energy/cycle time metrics for the MiniMIPS
asynchronous microprocessor over a range of voltages.

design methodology used eliminates all switching hazards.
The combination of these two techniques results in reduced
power dissipation for asynchronous architectures. If one is
used to thinking about clock gating, asynchronous compu-
tations have “gated clocks” down to individual gates. In
what follows, we will use the term power/energy to refer
to the switching power/energy (i.e., we will ignore leakage
currents).

The figure of merit we will focus on when evaluating
asynchronous architectures for power efficiency is the en-
ergy per operation. Energy per operation is an appropri-
ate metric for asynchronous architectures for two reasons.
First, the idle parts of an asynchronous circuit do not dis-
sipate any switching power. As a result, the energy con-
sumption of different operations can vary widely. Second,
a metric that does not depend on the time taken by the op-
eration (unlike power, for instance) allows us to compare
different architectures that perform the same computation
independent of timing considerations [32]. Tierno derived
an elegant method by which we can estimate the energy per
operation of the high-level specification of an asynchronous
circuit [32]. We also showed how the energy per opera-
tion of the specification of a circuit can be related to the
information-theoretic entropy of its specification [33]. We
also derived lower bounds on the energy per operation by
designing optimal coding techniques to specify the traces
of the computation [12]. Other work has also shown that
the entropy of the specification can be used to estimate the
energy per operation [27].

The energy-index of a CHP computation is an estimate
of the amount of switching capacitance for a given opera-
tion [33]. This measure can be determined from the syntax
of the CHP computation, along with statistical informa-
tion about the probabilities of different input cases. The
reason this measure is accurate is two-fold: Asynchronous
computations only dissipate energy when the CHP compu-
tation makes forward progress; the VLSI implementation
of a CHP program can be determined from the syntax of
the program itself. This energy index model has been used
in determining energy-efficient memory configurations for
asynchronous systems [34].

ExampPLE: Consider a simplified view of the decode phase
of a microprocessor. A decoder can be visualized as a se-
lection tree, with the leaves corresponding to the different
possible symbols and the root corresponding to the instruc-
tion that has to be classified. If we consider the possible
instructions to be symbols of an alphabet A with some fre-
quency distribution, then the best clocked implementation
would use a “flat” decoder—attempt to equalize decoding
time so as to maximize clock rate. The resulting tree would
have lg|A| depth, making decoding time as well as energy
per operation proportional to lg|A|. An asynchronous im-
plementation could use a Huffman tree classifier, making
the average case decoding time and average energy per op-
eration H(A) < lg|A|, where H(A) is the entropy of the
input distribution. 1
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A more intriguing feature of asynchronous systems is
that they provide a more continuous tradeoff between en-
ergy and performance. This is discussed further in the
following section.

IV. AVERAGE-CASE PERFORMANCE AND JOINT
PERFORMANCE/ENERGY OPTIMIZATION

A common reason for high energy consumption by mod-
ern processors is their use of speculative execution for en-
hancing performance. For example, a two-way set asso-
ciative cache typically reads both sets simultaneously even
though one of the two sets is guaranteed not to hold the
address being read. A conditional-sum adder computes two
sums—one for each possible carry-in—and then selects the
correct sum once the carry has been computed. In both
examples, energy could be saved by serializing some oper-
ations by only performing them whenever necessary while
increasing the time taken for the computation.

In a clocked system, the global clock frequency is de-
termined by the maximum worst-case delay of all compo-
nents in the system.! Therefore, sequentializing an opera-
tion would be unacceptable if it causes the worst-case delay
of the component to exceed the target clock cycle time—
a local change would impact global performance through
a lower clock rate. In an asynchronous system, it would
only affect the delay for the particular operation under
consideration—and only when the operation is performed.

ExAMPLE: The decoder example in the previous section
showed how using a Huffman code would reduce both the
average energy as well as the average delay. Note that the
worst-case energy and delay would probably be worse when
using a Huffman coded decoder, and the delay considera-
tions would preclude such an implementation in a clocked
system. [ ]

Average-case design can lead to reduced latencies, and
sometimes the latencies can be asymptotically lower than
the corresponding latencies for clocked systems. As early
as 1946, von Neumann showed that an asynchronous n-bit
ripple-carry adder had an average-case latency of O(logn)
steps [2]. However, the adder had a worst-case latency of
O(n) steps since it was a ripple-carry adder. Recently, we

1Skew-tolerant domino circuits alleviate some local timing problems
in clocked circuits [10].

designed an asynchronous n-bit adder with an average-case
latency of O(loglogn) steps and a worst-case latency of
O(logn) steps, showing how asynchronous techniques can
be used to improve the latency of operations by exploiting
data-dependent delays [18]. Figure 5 shows the architec-
ture of the sub-logarithmic adder. It contains the normal
kpg tree as well as the ripple-carry chain. The adder stages
wait for the carry-in to arrive from either the kpg computa-
tion or the ripple-carry chain and then produce their out-
put. This optimization results in multiple paths that can
be used for carry propagation, and analysis shows that the
average-case latency is sub-logarithmic. We also showed
that the adder had the best possible asymptotic average-
case latency for any input probability distribution [13].
The MiniMIPS processor demonstrates several instances
of average-case optimization. The exception mechanism
is optimized for the common-case so as to avoid synchro-
nizing the instruction fetch and execution pipelines. The
cache core was designed to have a lower cycle time than
the rest of the system as an energy-saving measure, be-
cause it was determined that this would only slow down
system throughput in 2% of the cases. The register file
uses a special bypass circuit to handle forwarding. This not
only improves performance, but results in reduced energy
consumption because a forwarded operand is not read from
the register file. These preliminary results are encouraging,
and suggest that other structures in modern architectures
should be examined and re-optimized for average-case per-
formance by exploiting data-dependent delays.
Techniques for asynchronous systems need to find a com-
promise between energy optimization and delay optimiza-
tion. Since asynchronous QDI circuits are robust to varia-
tions in voltage, we can vary the voltage to attain different
design points in the (E,7) space, where FE is the energy
per operation and 7 is the cycle time. Since E ~ V?
and 7 ~ 1/V, E7? is a good metric for the joint en-
ergy/performance optimization of asynchronous systems
since it is voltage-independent to first order [20]. Given
two designs, the one with a better (lower) E72 value would
be able to match the performance of the other while us-
ing less energy per operation; it could also match the en-
ergy per operation while having better performance. (The
only caveat is that the design point might be out of the
operating voltage range—higher than the punch through
voltage or lower than the threshold voltages.) Figures 1
and 4 show that E72 is relatively voltage-independent over
a wide range of voltages for both asynchronous processors
discussed in this paper. The same figures show another
commonly used metric—the energy delay product—for the
same processor. As can be seen, this metric varies linearly
with voltage (as expected), and therefore cannot be used to
compare VLSI computations that operate correctly over a
wide voltage range. Metrics like the energy delay product
and the energy can be artificially minimized by running a
computation at the lowest permissible supply voltage.
E72 optimization can be applied at both the circuit level
as well as the architecture level. The following example
shows how one might calculate the pipeline depth in an



asynchronous system that optimizes E712.

ExaMpPLE: Consider a simple linear pipeline being opti-
mized for E7%, where « is some constant. Let n be the
number of pipeline stages, E(n) be the energy per oper-
ation, and 7(n) the cycle time of the pipeline. A simple
model for both energy and delay is that E(n) = E. + Epn,
and 7(n) = t, + t./n, where E, corresponds to the en-
ergy spent computing, F, is the energy overhead of each
additional pipeline stage, ¢, is the cycle time overhead of
pipelining, and t. is the time spent computing. A simple
calculation shows that when E7% is optimized for pipeline
depth,

Eopt = E(1+(a=1)f/2+f/2¢/(a —1)* + 4a/f)

Topt = tp(1+2/((a@=1)* + /(a—1)* +4a/f))
where f = (Ept.)/(Ectp). For f =1, this simplifies to:

Eopt = Ec(l +a)

In other words, if the ratio between the energy overhead
for pipelining and the energy used by the computation is
the same as the ratio between the cycle time overhead for
pipelining to the time spent computing, then the optimal
pipeline depth results when the energy spent in pipelining
overhead is o times the energy spent computing. For o = 2,
Eopt = 3E, and T, = 1.5t,. 1

The robustness of asynchronous design methods to varia-
tions in voltage permit a constant E72 scaling, rather than
the constant E scaling that would result by a simple scal-
ing in the clock frequency. Constant E72 scaling can also
be achieved by clocked systems designed to be robust to
voltage variations, and that vary their voltage with clock
frequency.

V. DEsIGN TooOLS

While most designers will agree that tools for the design
of modern VLSI systems are inadequate in several ways,
there has been much more work done in developing tools
for clocked circuits. In this section we describe the tools
that have been developed for asynchronous systems. These
tools were used during the two aforementioned processor
projects. To place these tools in context, we provide a brief
description of the design flow for asynchronous systems.

A. Design Flow

The initial specification of the circuit to be designed
is described in the programming notation CHP. The con-
structs of the language are described in the appendix, and
include primitives for computation and communication.

The next step in the design flow is to decompose the
sequential CHP program into a number of concurrently
operating CHP programs using program transformations.
This is the part of the design flow where most architectural
choices are made. Decisions about pipeline structure, de-
gree of pipelining, and control/data partitioning are taken
at this step. Transformations such as process decomposi-
tion and projection are used to ensure that correctness is

CHP Specification

l program
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l syntactic translation

HSE reshuffling

l production rule
synthesis
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l bubble
reshuffling

CMOS-Realizable

PRS
transistor

l sizing

Sized PRS
l layout

Physical Design

Fig. 6. Top-down design flow. If the design does not meet the
required performance/energy/area target, design steps may have
to be iterated.

preserved when translating a sequential CHP program into
a number of concurrent parts.

The next step in the design flow is to translate each
CHP process into handshaking expansions (HSE). Hand-
shaking expansions can be thought of as a restricted sub-
set of CHP, where all variables are Boolean-valued and all
communication actions are replaced with synchronization
protocols (handshake protocols). This transformation is
syntax-directed, since each CHP action can be locally re-
placed with the appropriate HSE. Once the HSE for a pro-
cess is obtained, it can be reshuffled for performance opti-
mization.

The next step in the design flow is to translate HSE
into a production rule set (PRS), a digital abstraction for
CMOS circuits. A production rule is of the form G — z?1
or G — x|, where G is a Boolean expression and z is a
variable. The rule G +— z71 corresponds to a pull-up net-
work, and G +— z] corresponds to a pull-down network.
The translation from HSE to PRS guarantees that the re-
sulting PRS satisfies two key properties: stability and non-
interference. Stability and non-interference are necessary
and sufficient for hazard-free circuit behavior [17]. Once
production rules are obtained, they must be made CMOS-
implementable—rules of the form G — z] must be imple-
mentable with n-transistors, and rules of the form G — z?1
must be implementable with p-transistors. This transfor-



mation is known as bubble reshuffling, because it involves
the insertion or movement of inverter “bubbles” in the cir-
cuit.

The next step in the design flow is to take the bubble-
reshufled PRS and determine the appropriate transistor
sizing to optimize the desired performance metric. Once
transistor sizes are chosen, we can implement the circuit in
CMOS. For QDI circuits, transistor sizing does not affect
correctness except for the isochronic fork assumption. The
entire design flow is summarized in Figure 6.

B. Simulation and Synthesis Tools

In the first asynchronous processor and the MiniMIPS
design, high-level CHP transformations were applied man-
ually. We are currently developing tools that will assist in
the CHP-level design of asynchronous systems. Develop-
ing good algorithms for CHP-level design is a topic of cur-
rent research. We do not expect that these transformations
can be completely automated in the general case, because
these transformations determine both the architecture and
pipeline structure of the final implementation.

We have several CHP-level simulators currently avail-
able. The first one, mcc, is a compiler for an extension
of the C language that supports the CHP constructs de-
scribed in the appendix. This simulator was used when
running test programs through the high-level description
of the MiniMIPS processor. More recently, we have de-
veloped a simulator that supports the syntax of the CHP
language and automatically generates (approximate) tim-
ing and energy information.

Handshaking expansions can be syntactically derived
from CHP, and they were manually generated for the first
microprocessor project. We have developed a program that
can translate CHP programs into handshaking expansions.
Reshuffling handshaking expansions is another task that
is performed manually. In the MiniMIPS project, we de-
termined a small set of reshuffled handshaking expansions
that led to good circuit implementations, and each CHP
process was translated into a “canonical” handshaking ex-
pansion [20]. This greatly simplified the HSE part of the
design.

A program, he2prs, that transforms handshaking ex-
pansions to production rules in a purely syntactic man-
ner supports simulation of handshaking expansions using
PRS simulators. While this program generates produc-
tion rules, the resulting rules are inefficient. prgen is a
program that generates good production rules for a com-
mon subset of handshaking expansions that arise in con-
trol processes. hse and hse2prs were programs that were
developed (and are currently being improved) to handle
general handshaking expansions. The restricted handshak-
ing expansions chosen for the MiniMIPS project made the
translation of HSE to PRS a straightforward task [20].

When production rules are written by hand, the program
prlint can check that they are stable and non-interfering.
Another program prchk performs the same function except
it uses OBDDs to represent the state space.

We have several production rule simulators available.

The first, prsim, has a number of features that makes it
suitable for quickly testing a set of production rules. For
instance, prsim can simulate the environment of a CHP
process internally and can be used to generate a stream of
input values for a CHP process. This simulator was used
for most of the design of the MiniMIPS project. A simula-
tor with less functionality but which could simulate much
larger circuits in a small memory footprint and with greater
speed, csim, was used for the complete digital switch-level
simulation of the MiniMIPS. These simulators can report
accurate timing information. A third simulator, nsim, is
currently under development. In addition to the func-
tionality of csim, it also reports accurate energy estimates
and supports mixed-mode simulation of CHP and PRS. All
these production rule simulators report errors if they de-
tect a switching hazard during simulation. This can only
occur if a designer decides to bypass the synthesis proce-
dure and does not run prlint or prchk on hand-generated
production rules.

Bubble-reshuffling can be done by using the program
bubble. Once bubble-reshuffling is performed, ergen can
be used for transistor sizing. ergen uses a performance
analysis framework to determine the cycle time of the asyn-
chronous circuit and then attempts to optimize it by ad-
justing the transistor widths of different gates. Once sized
production rules are obtained, we can proceed with physi-
cal design.

During the course of the MiniMIPS project, two tools
to support analog simulation were developed. aspice is a
mixed analog-digital simulator that was used to simulate
the full MiniMIPS design. Different units could be simu-
lated at the analog level while most of the chip was simu-
lated at the digital level. alint was developed to analyze
the output of aspice to identify a number of different ana-
log problems including poor slew rates, critical path analy-
sis, and charge-sharing. We also used MetaSoft’s HSPICE
for analog simulations.

C. Physical Design Tools

The QDI model for asynchronous VLSI assumes that
gates in the final implementation may have arbitrary pos-
itive delays. Therefore, the correctness of the system does
not depend on the actual delays of the gates. This elimi-
nates the need for timing verification of QDI circuits. Tim-
ing analysis is solely used to optimize the performance of
the design, and is not required to ensure that the design
functions correctly.

A sized production rule set can be syntactically trans-
formed into a netlist with transistor width specifications.
At this point we are faced with the same physical design
problem as the one faced by clocked circuit designers: de-
termine the best possible placement for each gate and route
each netlist.

The first asynchronous microprocessor was designed us-
ing full-custom layout for the datapath and automated lay-
out for the control. Full-custom layout was done with the
Magic VLSI layout editor. Two programs were used for the
control design: cellgen and Vgladys. cellgen is a pro-



gram that takes a sized production rule set and generates
a standard cell style layout for it. Vgladys is a placement
and routing tool that uses simulated annealing for place-
ment and a channel router.

The MiniMIPS processor was designed using full-custom
layout done with a version of Magic augmented with a sim-
ple production rule layout capability. A programming lan-
guage was added to the user interface to make the layout
editor extensible, and the language was used to add sev-
eral features to Magic. These changes have been incor-
porated into the standard Magic release, and the current
version is available through CVS from Cornell. In addition,
a program called 1lvs was developed to validate the phys-
ical design against a production rule description. Apart
from checking that production rules are correctly imple-
mented, lvs performs checks for analog problems such as
charge sharing and capacitive coupling. The program was
also used for checking clocked designs in Caltech’s class on
VLSI design.

D. Summary

With the current design tools, a typical asynchronous
chip would be designed as follows:
e Initial CHP specification and concurrent CHP design
done manually. Architectural, pipelining, and other ma-
jor design decisions made. The design can be simulated
using the CHP simulator, and timing/energy feedback can
be used to identify and eliminate architectural bottlenecks.
e The concurrent CHP is translated into reshuffled HSE
using the circuit templates developed for the MiniMIPS
project.  Non-standard HSE reshufflings can also be
used if necessary for achieving the desired through-
put/energy/area target.
o HSE translated to PRS using hse2prs or hse, and the
result can be bubble-reshuffled using bubble. The produc-
tion rules can be simulated using prsim. If the design is
too large for prsim to handle, nsim can be used for digi-
tal simulation. If production rules are generated by hand,
prlint may be used for production rule validation.
o Transistor sizing is performed using ergen.
e The design is floorplanned, and the CMOS implementa-
tion of the production rules are placed and routed. Any
manual design using Magic can be validated against the
production rule description using lvs. The physical de-
sign can be extracted and simulated using HSPICE, or a
mixed-mode simulation can be performed using aspice. In
either case, alint can be used to quickly identify analog
problems such as charge-sharing or capacitive coupling.

E. Comparison with Clocked Designs

The design flow for asynchronous systems is similar to
the flow for clocked systems, but the architectural trade-
offs differ because of the asynchronous nature of the imple-
mentation. The initial architectural decisions in a clocked
system are made by the designers, much like the high-level
CHP design in an asynchronous system. Once the RTL
description is finalized, the design is implemented using a
hardware description language such as Verilog or VHDL.

The design can be simulated at this level, and contains
a complete description of the architecture of the clocked
system.

Verilog/VHDL design is followed by logic synthesis,
where the hardware description language is translated into
logic gates by synthesis tools or by hand. This phase
roughly corresponds to the translation of CHP to produc-
tion rules.

The mapped logic is then simulated, and timing valida-
tion is performed. While timing validation is not necessary
for QDI circuits, production rule simulation and timing
analysis are also performed for performance tuning.

Finally, the design is floorplanned, and the synthesized
logic gates are placed and routed. This step is analogous
to the one for asynchronous designs.

VI. RELATED AND FUTURE WORK
A. Historical Perspective

Asynchronous switching circuits have been in use since
the 1940’s. The Illiac, designed by the University of Illinois
in the 1950’s, is an example of a computer that contained
both synchronous and asynchronous switching circuits [26].
Early concepts in the design of asynchronous circuits were
contributed by D.A. Huffman in the 1950’s [26]. As com-
plex asynchronous circuits became difficult to design be-
cause of the problem of hazards (glitches) in switching sig-
nals, they were replaced by synchronous circuits.

A theory of speed-independent asynchronous switching
circuits was developed by D.E. Muller in the early 1960’s
as an attempt to abstract from the difficulties of designing
circuits that depended heavily on their precise physical im-
plementation. His model assumed that transistor networks
may have arbitrary delay, and that the propagation delay
through wires is negligible compared to the delay through
the network. However, his design methodology was limited
to simple sequential circuits.

Modern asynchronous circuit design probably began
when concerns arose regarding problems with the physi-
cal realization of large-scale synchronous systems. In 1979,
Seitz proposed a design methodology for self-timed circuits
wherein the circuit was to be decomposed into equipoten-
tial regions—regions where delays in wires could be consid-
ered negligible, with explicit modeling of signal propagation
delay between such regions [30].

The main problem with all these design methodologies
is that they attempted to design asynchronous circuits in a
bottom-up manner by removing switching hazards as they
were encountered, thereby making the design method cum-
bersome and error-prone. The resulting circuits were very
sensitive to gate delays, making timing validation a critical
part of circuit verification. The techniques we refer to in
this paper are top-down and synthesis based, and make the
minimum possible timing assumptions.

The first method for the synthesis of asynchronous cir-
cuits whose correct functioning did not depend on the
delays of gates and which permitted multiple concurrent
switching signals was introduced by Alain Martin [21]. His



formal synthesis approach is inspired by the observation
that a VLSI chip is a fine-grained concurrent computa-
tion. VLSI computations are modeled using CHP pro-
grams that describe their behavior algorithmically. Asyn-
chronous quasi delay-insensitive (QDI) circuits are syn-
thesized from these programs using semantics-preserving
transformations. The circuit design methodology assumes
that gates have arbitrary delay, and only makes relative
timing assumptions on the propagation delay of some sig-
nals that fanout to multiple gates. The result is a method-
ology that produces circuits robust to variations in device
parameters, voltage, and temperature.

Martin’s synthesis methodology results in asynchronous
circuits that are guaranteed to have no switching haz-
ards. The methodology generates circuits that satisfy two
key properties—stability and non-interference—that are
both necessary and sufficient for hazard-free circuit behav-
ior [17].

B. Current Asynchronous Architectures

Existing asynchronous processors have either used a
RISC instruction set in the interests of simplicity, or an in-
struction set based on one for a clocked processor [6], [28],
[29], [20]. The AMULET is a self-timed ARM processor. It
uses the same pipeline structure as its clocked counterpart,
and it has only one execution unit. The next version of this
processor is planned to be dual-issue. The Fred architec-
ture uses a Motorola 88100-based instruction set [35], and
a decoupled architecture similar to out-of-order processors
like the R10000 [36]. The asynchronous MiniMIPS design
has a better throughput and E72 compared to these proces-
sors.2 The counterflow pipeline architecture uses a pipeline
where operands and instructions flow in opposite directions
with arbitration being used to resolve dependencies [31].
In the clocked world, skew-tolerant domino pipes [10] per-
mit local time borrowing to alleviate some timing issues
in latched-based clocked designs. Asynchronous circuits
have the added benefit that they support the execution of
computations even when they exceed the “borrowing limit”
from an adjacent pipeline stage, while still being optimized
for higher average-case throughput.

A comparison of the MiniMIPS processor with other
clocked architectures can be found in [20]. The compar-
ison is difficult to make because modern high-performance
processors have many additional features not supported by
the MiniMIPS (such as floating-point), and most clocked
processors with a feature set that match the MiniMIPS are
not designed for performance. The next-generation asyn-
chronous processor under development will have several ad-
ditional features, and we plan to make a comparison when
the design is relatively complete.

C. Future Work

In future work, we plan to explore the design of a low-
energy asynchronous processor that incorporates the ideas

2We are not aware of published energy per operation values for
Fred.

that we have discussed in this paper. The MiniMIPS pro-
cessor project was not focused on energy optimization, and
there are several instances of optimizations that would sig-
nificantly reduce the energy per operation of the MiniMIPS
while keeping throughput high. As part of this project, we
are currently developing new design tools that will be ca-
pable of automating several tasks that were done manually
during the MiniMIPS project. We also plan to explore
the construction of asynchronous memory systems, in par-
ticular asynchronous active memories, since asynchronous
design techniques enable a number of interesting optimiza-
tions in memory design [14].

VII. SUMMARY

We have presented a case for the design of modern asyn-
chronous systems. We believe that this approach will pro-
vide significant advantages in terms of design complexity,
energy efficiency, performance optimization for average-
case behavior, and system scalability.
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APPENDIX
I. NOTATION

The notation we use is based on Hoare’s CSP [8]. What
follows is a short and informal description of the notation

we use. A complete formal semantics can be found in van
der Goot’s thesis [9].

Simple statements and expressions.

o Skip: skip. This statement does nothing.

e Assignment: z := F. This statement means “assign the
value of F to z.” When F is true, we abbreviate ¢ := F
to #7, and when F is false we abbreviate z := E to z|.

o Communication: X!e means send the value of e over
channel X; Y7z means receive a value over channel Y and
store it in variable xz. When we are not communicating
data values over a channel, the directionality of the channel
is unimportant. In this case, the statement X denotes a
synchronization action on port X.

o Probe: The boolean X is true if and only if a communi-
cation over channel X can complete without suspending.

Compound statements.



e Selection: [G; — S [ ... 0 G,, — S,.]1, where G;’s are
boolean expressions (guards) and S;’s are program parts.
The execution of this command corresponds to waiting un-
til one of the guards is true, and then executing one of
the statements with a true guard. The notation [G] is
short-hand for [G — skip], and denotes waiting for the
predicate G to become true. If the guards are not mutually
exclusive, we use the vertical bar “|” instead of “[.”

e Repetition: *[G; — 51 [0 ... 0 G, — S,]. The execu-
tion of this command corresponds to choosing one of the
true guards and executing the corresponding statement, re-
peating this until all guards evaluate to false. The notation
x[S] is short-hand for * [true — S]. If the guards are not
mutually exclusive, we use the vertical bar “|” instead of
“|]‘”

o Sequential Composition: S;T. The semicolon binds
tighter than the parallel composition operator ||, but
weaker than the comma or bullet.

o Parallel Composition: S || T or S, T. The || operator
binds weaker than the bullet or semicolon. The comma
binds tighter than the semicolon but weaker than the bul-
let.

o Simultaneous Composition: S e T (read “S bullet T7)
means that the actions S and 7 complete simultaneously.
Typically, the two actions are communication actions only,
and the implementation of the bullet corresponds to replac-
ing S by S; S and T by T; T and then picking an interleav-
ing of the “doubled” actions, like S; T'; S; T'. The operator
binds tighter than the semicolon and parallel composition.

The concurrent execution of a collection of CHP processes
is assumed to be weakly fair—every continuously enabled
action will be given a chance to execute eventually. The
choice operator in the selection statement is assumed to be
demonic, and therefore the choice is not fair. Consider the
following four processes:

x[ X107 || [ Y!1 1
| *[[X — X%’ | Y — Y?21; Zlz ]
|| *L W12 1]

Since the selection statement is not fair, Z is permitted
to output an infinite sequence of zeros. However, both Z!z
and W!2 will execute eventually, since parallel composition
is assumed to be weakly fair.

II. PROGRAM TRANSFORMATIONS

The following describes some of the program transfor-
mations used in the first asynchronous microprocessor.

ExampLE: Consider a computation described as the infi-
nite repetition of three actions S, T, and U. The CHP for
this computation is shown below:

*x[ S;T;U ]

(The *[ and ] denote an infinite repetition.) One of
the synthesis transformations, known as process decompo-
sition [23], breaks up a sequential computation into two
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parts in a structured manner. An instance of process de-
composition would be to replace the computation shown
above by:

*[ $; XL U ] || *[[X — T;X71]

In this decomposition, after S executes, a communication
action X! (send) is attempted. The second process waits
until a communication on X is attempted, and then ex-
ecutes 7. Once T completes, X7 (a receive) is executed,
permitting X! to complete. U can now execute, and the
entire computation can be repeated.

What should be noted is that the transformation applied
to convert *[S; T; U] into *[S; X!; U1|[*[[X — T;X?1]
clearly preserves the semantics of the computation. Also,
the transformation can be easily checked if we specify the
program fragment to which the transformation was applied.
This is a recurring theme in the transformations used for
asynchronous VLSI design. 1

Process decomposition does not introduce concurrency
into the system. We can do so by attempting to overlap
different parts of the computation that are clearly not data-
dependent. The following example demonstrates such a
transformation.

EXAMPLE: Consider a counter that stores an integer z,
and can supports operations that increment z by 1, reset
z to zero, or read z. This is described as follows:

*x[[inc — z := z + 1;inc?
lreset — z := 0; reset?
Oread — read!z
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The process waits until one of the three requests: inc, reset,
or read is true, performs the specified operation, and com-
pletes the communication action. Since z is a local vari-
able, we can replace this process with the following without
changing the correctness of the computation:

*x[[inc — incl;z =z +1
Oreset — reset?;z := 0
lread — read!z

1]

Now when the environment requests an increment opera-
tion, the request is completed before the increment is per-
formed.

Once again, we have shown a local transformation that
introduces concurrency between the counter and its envi-
ronment without affecting correctness. The transformation
is syntactic, local, and easy to check. ]



