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Abstract—Asynchrony and concurrency are fundamental no-
tions in the fields of asynchronous circuits as well as distributed
systems. This paper treats asynchronous circuits as a special
class of distributed systems. We adapt the distributed systems
notion of potential causality to asynchronous circuits, and use it
to provide a formal proof of the precise nature of the isochronic
fork timing assumption in quasi delay-insensitive (QDI) circuits.
Our proofs provide a transparent analysis that provides better
intuition regarding the operation of QDI circuits. We build on
our theory to rigorously establish several “folk theorems” about
identifying isochronic forks in QDI circuits.

I. INTRODUCTION

There are a variety of approaches to the design of asyn-
chronous circuits, each using a different set of assumptions
about the timing properties of gates. Speed-independent (SI)
circuits are those that operate correctly in the presence of
arbitrary gate delays, but wire delays are assumed to be
negligible. Quasi delay-insensitive (QDI) also assume arbi-
trary gate delays, but the delays of some wires that fork to
multiple gates—known as isochronic forks—are assumed to
be small [10]. Purely delay-insensitive circuits (DI) operate
correctly in the presence of arbitrary gate and wire delays [10].
There are many other approaches to timing in asynchronous
circuits, these three classes are the most conservative in what
they assume about the underlying circuit technology.

A natural question that arises is the following: what is the
expressive power of each class of circuits? In a well-known
paper, Martin argued that the class of DI circuits is quite
limited [10], providing a justification for considering timing in
asynchronous circuits beyond considerations of performance,
energy, or area. The class of QDI circuit is “in-between” DI
and SI in terms of the assumptions made on timing,1 because
assuming negligible wire delays (the SI assumption) auto-
matically implies that the isochronic fork timing assumption
would be satisfied under the QDI model. Follow-on work has
shown that QDI circuits are Turing-complete [8]. Therefore,
the isochronic fork assumption is strong enough to enhance
the computational power of asynchronous circuits so that any
computable function (modulo finite memory) can be designed
under the QDI model.

Since the isochronic fork is so fundamental, it is important
to have a precise, formal characterization of the nature of the
isochronic fork timing assumption. Suppose a gate output x
forks to two other gates, and label the other end of the two
end-points x1 and x2 as shown in Fig. 1. Furthermore, assume

† Yoram Moses is the Israel Pollak academic chair at the Technion. This
work was supported in part by the ISF grant 1520/11, and by a Ruch grant
from the Jacobs Institute at Cornell Tech.

1Note that the QDI and SI assumptions define the same set of circuits.

that this is an isochronic fork. The original description of
the isochronic fork states that “we have to assume that the
difference between the delays in the branches of the fork is
negligible compared to the delays in the gates.” [10]. Other
descriptions are less conservative. In an example, [8] examines
the scenario where a signal transition x1↑ causes y↑, and states
“we assume that, when transition x1↑ has been acknowledged
by transition y↑, transition x2↑ is also completed.” In other
words, as long as x2 has changed by the time y changes, the
isochronic fork assumption has been satisfied.

The most recent description that formalizes the nature of
the isochronic fork timing assumption instead examines the
impact of an adversary path [6]. In Fig. 1, an adversary
path (shown by a broken line) corresponds to a sequence of
gates whose delay competes with the wire from x to x2. To
establish the existence of such a path, [6] introduces a number
of new definitions including a new execution model that tracks
switching hazards, syntactic properties of Boolean expressions
that correspond to pull-up and pull-down switching networks,
relaxations of executions, and other technical properties. Even
with this machinery, the proof of the main theorem is only
sketched in [6], with the details to be provided in a technical
report. To date, this report has not been completed [5]. Thus,
the proof of the main result establishing the nature of the
isochronic fork timing assumption is unavailable.

The distributed systems field studies the behavior of con-
current systems that consist of asynchronous processes that
communicate via channels—which is identical to the high
level description of asynchronous circuits using a language
such as communicating hardware processes (CHP) [9]. There-
fore, most of the results in the distributed systems literature
translate to asynchronous circuits described at the CHP level
of abstraction. In this paper, we adapt a key concept in
the distributed systems community—potential causality—to
asynchronous circuits described as a collection of gates and
wires, rather than processes and channels.

Our gate-level definition of potential causality is used to
formally establish a number of key properties of isochronic
and non-isochronic branches in QDI circuits. Some of these
are “folk theorems” that are intuitively understood by prac-
titioners of QDI circuits, but they have not previously been
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Fig. 1. A wire fork from the output of a gate x to the input of two other
gates. The two end-points of the fork are labelled x1 and x2.



rigorously established using complete formal proofs. The main
contributions of this paper are:

• We introduce the notion of potential causality to the
gates and circuits framework, adapting it from the
distributed systems literature. Moreover, we formalize
its role in circuit computations by proving the past
theorem (Theorem 1).

• We prove the firing loop theorem (Theorem 2), which
shows that feedback loops going through every output
wire must exist between successive firings of a gate.

• Our main result is a complete and concise proof of the
adversarial firing chain theorem (Theorem 3), which
precisely characterizes the nature of the isochronic
fork timing assumption.

• Finally, we illustrate how our results can be used to
identify isochronic branches in a circuit from its set
of production rules.

By providing crisp definitions and concise proofs of
these essential aspects of asynchronous circuits, this paper
contributes to the goal of providing a sound and effective
mathematical theory for the field of asynchronous and self-
timed systems. Moreover, we believe that our proofs, while
technical, provide insight into the nature of isochronic forks
in asynchronous circuits.

We begin by defining the execution model for asyn-
chronous circuits, and review some of the standard terminology
used in the literature (Section II). We also introduce a few
key concepts from distributed systems that are used to reason
about causality (Section II). Our main theorem about causality
provides a formal way to show that the state of a gate at a
point in time is only dependent on other gates in the past that
have a causal connection to it (Section III). We then introduce
the concepts of stability and non-interference of gates, and
examine the impact of assuming that a gate is stable and non-
interefering. Our main contribution is a complete proof of the
adversarial firing chain theorem (Section IV). We then discuss
related work in the asynchronous design community and in the
distributed systems literature (Section V).

II. DEFINITIONS AND MODEL

We assume the basic terminology of asynchronous circuits,
production rules (PR) and effective firings as in [10]. We repeat
the definitions for completeness.

A production rule (PR) over a set V of binary variables has
the form B 7→ z↑ or B 7→ z↓, where z ∈ V is a variable, and B
is a propositional formula over a subset of the variables of V .
A gate is a pair of production rules Bu 7→ z↑ and Bd 7→ z↓
for the same variable z. If y is a variable used in Bu or Bd,
then we say that y is an input to the gate for variable z. A
circuit over a set of variables V is a set of |V | gates, one per
variable z ∈ V .

Consider a circuit A over a set VA of variables. A con-
figuration of A is an assignment c : VA → {0, 1} of binary
values to the variables of VA. Thus, if VA = {x1, . . . , xn}
then we can think of a configuration of A as an assignment
~x = 〈b1, . . . , bn〉 of binary values so that xi = bi for all
1 ≤ i ≤ n.

A production rule with guard B is enabled in a configura-
tion c if its guard is true there. (This is denoted by c |= B.)
The execution of an enabled production rule for variable x is
called a firing. The firing causes the right hand side of the
PR to be executed, so that the output of the PR is set to true
(i.e., 1) or false (i.e., 0) depending on the right hand side of
the PR. If this leaves the state (i.e., value) of x unchanged it
is called a vacuous firing, and if it causes a state change it is
an effective firing.

A. Computations

A computation of the circuit A is an infinite sequence
s : N→ C of configurations, such that s(m + 1) is obtained
from s(m) by firing zero or more PRs that are enabled at s(m),
for all m ≥ 0. (A computation is finite in this setting if there
exists a finite N0 such that s(m) is constant for all m > N0.)
We can also define notions of fairness of computations, e.g., if
a PR is enabled continuously then it fires eventually, but that
will not play a role in the particular analysis that we perform
in this paper. The value of a variable x at time t is denoted by
sx(t). We say that the value of x changes at time t in s if
sx(t + 1) 6= sx(t). In natural scenarios there may be a set of
legal initial configurations for the circuit. Computations will
only be allowed to start in one of these. A general configuration
is then legal if it is reachable in a computation that starts in a
legal initial state.

Note that our definition of computations allows steps in
which no variable values change, i.e., there can be times t
such that s(t + 1) = s(t). In this case we say that there is a
skip step at time t in s. Given a general execution s, we define
its stuttering-free variant, denoted by s, to be the execution
obtained from s by removing all skip steps. In the Appendix we
give a formal definition of s and show that if s is a computation
of circuit A, then so is s. It is clear that if s is a computation
of A, the introduction or removal of a finite number of skip
steps to or from s results in another valid computation of A.

Configurations s(t) in a computation s are indexed by an
integer t that plays the role of an external notion of time. (We
also use m as an index for time.) But the circuit elements
do not have access to this index, and it does not affect their
operation. Reasoning from the outside, we will be interested
in distinguishing the state of a variable xi at different times m.
This state, denoted by the pair 〈xi,m〉, is called a node.

B. Potential Causality

We adapt Lamport [7] and define potential causality as a
binary relation over nodes on a circuit computation. Given a
computation s, we write 〈y,m〉 ↪→s 〈z,m+ 1〉 if a PR with
output z performs an effective firing at s(m), and the guard
of this PR contains either y or ¬y.

Example. Consider the example circuit in Fig. 2. The initial
state of the circuit is 0011, where the bit vector represents
the value xyab. The first firing in the circuit is y ↑ at
time 0, and there are two possible next firings a ↓ and
b ↓. An example execution of this circuit is the sequence
of actions y ↑; a ↓; b ↓;x ↑; y ↓; . . ., which is represented by
the computation s = 0011; 0111; 0101; 0100; 1100; 1000; . . .
Finally, in this computation s we have that 〈y, 1〉 ↪→s 〈a, 2〉
and 〈y, 2〉 ↪→s 〈b, 3〉. �
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Fig. 2. Simple circuit example to illustrate concepts. Initially a = b = 1,
x = 0, and y = 0. The grey dot next to y indicates that the first effective
firing in this circuit is a change in y.

For each computation s, we define a partial order �s

over variable-time nodes called potential causality in s, to
be the unique minimal relation satisfying the following three
conditions:

Locality: 〈y, t〉 �s 〈y, t′〉 if t ≤ t′;

Successor: 〈y, t〉 �s 〈z, t+ 1〉 if 〈y, t〉 ↪→s 〈z, t+ 1〉;

Transitivity: 〈y, t〉 �s 〈z, t′〉 if, for some 〈x,m〉, both
〈y, t〉 �s 〈x,m〉 and
〈x,m〉 �s 〈z, t′〉.

Example. Continuing our example from Fig. 2, we can assert
that 〈y, 1〉 �s 〈x, 4〉. �

C. Firing Chains and Past

When 〈y, t〉 �s 〈z, t′〉 where y 6= z, the definition of
potential causality implies that there must be a sequence of
variable changes that are linked by the successor relationship.
This is captured by the notion of firing chains.

Definition 1: We say that there is a chain of firings
from 〈y, t〉 to 〈z, t′〉 in the computation s if there is a
sequence of variables x1, . . . , xk = z and a sequence of
monotonically increasing times t1, . . . , tk with t ≤ t1 and
tk < t′, such that 〈y, t1〉 ↪→s 〈x1, t1 + 1〉 and such that
〈xi−1, ti〉 ↪→s 〈xi, ti + 1〉 holds for all 2 ≤ i ≤ k.

Example. Continuing our example from Fig. 2, there is a chain
of firings from 〈y, 1〉 to 〈y, 5〉 established by the sequence of
variables a, x, and y. �

A rather straightforward consequence of the definition
of �s is captured by

Lemma 1: Let y 6= z. Then 〈y, t〉 �s 〈z, t′〉 iff both t < t′

and there is a chain of firings from 〈y, t〉 to 〈z, t′〉 in s.

Proof: If t < t′ and there is a chain of firings from 〈y, t〉
to 〈z, t′〉 in s, then using Definition 1 and the definition of
potential causality immediately gives us that 〈y, t〉 �s 〈z, t′〉.
We now prove the other direction.

Assume that 〈y, t〉 �s 〈z, t′〉 and y 6= z. We prove the
claim by induction on the construction of 〈y, t〉 �s 〈z, t′〉 using
Locality, Successor, and Transitivity.

• 〈y, t〉 �s 〈z, t′〉 cannot be obtained by Locality since
y 6= z and Locality relates only nodes with the same
variable.

• If 〈y, t〉 �s 〈z, t′〉 is obtained by the Successor clause,
then t′ = t + 1 and z changes value at time t. Thus,
t′ > t and the sequence with k = 1, x1 = z and
t1 = t satisfies the condition establishing that there is
a chain of firings from 〈y, t〉 to 〈z, t′〉 in s.

• Assume that 〈y, t〉 �s 〈z, t′〉 is obtained by Transitiv-
ity, based on 〈y, t〉 �s 〈x,m〉 and 〈x,m〉 �s 〈z, t′〉.
Moreover, assume inductively that the claim holds for
the two derivations being combined. Since y 6= z it
follows that at least one of y 6= x or x 6= z holds. If
y 6= x then t < m ≤ t′ and if x 6= z then t ≤ m < t′,
so we immediately obtain that t < t′. It is easy to
check that if only one of the two inequalities holds,
then the sequence x1, . . . , xk and times t1, . . . , tk
guaranteed for that relation by the inductive hypothesis
satisfy the conditions of the claim. If y 6= x 6= z,
then by the inductive hypothesis there are sequences
x1, . . . , xk and t1, . . . , tk establishing a chain of
firings from 〈y, t〉 to 〈x,m〉 in s and sequences
x′1, . . . , x

′
k′ and t′1, . . . , t

′
k′ establishing a chain of

firings from 〈x,m〉 to 〈z, t′〉 in s. The concatenated
sequences of variables x1, . . . , xk, x′1, . . . , x

′
k′ and of

times t1, . . . , tk, t′1, . . . , t
′
k′ satisfy the conditions of

the claim.

Another useful notion in our model is the notion of the past
of a node, which consists of the set of nodes that are related to
it by the potential causality relation. More generally, we define
the past of a set of nodes as follows.

Definition 2 (Past): Given a computation s and a set T of
variable-time nodes, we define:

pasts(T ) =
⋃

〈y′,m′〉∈T

{〈x,m〉 : 〈x,m〉 �s 〈y′,m′〉} .

Example. Continuing our example from Fig. 2,

pasts({〈y, 5〉}) = {〈y, 5〉, 〈y, 4〉, 〈y, 3〉, 〈y, 2〉, 〈y, 1〉, 〈y, 0〉,
〈a, 2〉, 〈a, 1〉, 〈a, 0〉,
〈b, 3〉, 〈b, 2〉, 〈b, 1〉, 〈b, 0〉,
〈x, 4〉, 〈x, 3〉, 〈x, 2〉, 〈x, 1〉, 〈x, 0〉}

As another example for the same computation, the set
pasts({〈b, 3〉}) does not include any node with variable a.
�

III. THE PAST THEOREM

We now formalize the intuition that the values of the
variables at a set T of nodes in a computation s depend only
on the values at the nodes in pasts(T ). We shall consider a
set T all of whose nodes 〈y,m′〉 are at the same time m′. For
any given earlier time m < m′, we construct a computation s′
that coincides with s up to time m, in which the only changes
after time m are those that appear in pasts(T ), and the nodes
of T obtain the same values in s′ as they do in s.

Theorem 1: Fix an asynchronous circuit A, a computa-
tion s of A, times m < m′, and a set T of nodes 〈y,m′〉
at time m′. Then there is a computation s′ of A such that
s′(t) = s(t) for all times t ≤ m, and for all variables x and
times t in the range m < t ≤ m′, we have

(a) s′x(t) = sx(t) if 〈x, t〉 ∈ pasts(T ) (and so, in
particular, s′y(m

′) = sy(m
′) for all 〈y,m′〉 ∈ T ), and

(b) s′x(t) = sx(m) if 〈x,m+ 1〉 /∈ pasts(T ).



Proof: We define the desired computation s′ based on s.
For times t ≤ m we define s′(t) = s(t) as desired, while for
times t such that m ≤ t < m′, a PR with output variable z
will fire at s′(t) iff (i) 〈z, t+ 1〉 ∈ pasts(T ), (ii) the PR fires
at s(t) and (iii) the PR is enabled at s′(t). Finally, from time m′
on, the computation in s′ proceeds in such a way that at every
time step all enabled production rules fire.2 Observe that s′
is a valid computation of A, because by construction, only
enabled PRs fire in s′. In addition, notice that by Locality, if
〈x,m+ 1〉 /∈ pasts(T ) then 〈x, t〉 /∈ pasts(T ) for all t in the
range m < t ≤ m′, and so, by definition of s′, the gate for x
does not fire between times m and t− 1 in s′. It follows that
s′x(t) = sx(m) if 〈x,m+ 1〉 /∈ pasts(T ), so that s′ satisfies
property (b). We now prove that s′ satisfies property (a) for
all times t in the range m ≤ t ≤ m′, by induction on t.

Base case t = m: By construction of s′ we have that
s′x(m) = sx(m) for all variables x, including ones that satisfy
〈x, t〉 ∈ pasts(T ), so property (a) holds.

Inductive step t > m: Assume inductively that the claim
holds for all variables z at time t−1, and let 〈x, t〉 ∈ pasts(T ).
By locality, 〈x, t− 1〉 �s 〈x, t〉 and from 〈x, t〉 ∈ pasts(T )
we have that 〈x, t− 1〉 ∈ pasts(T ) by transitivity of �s.
Hence, by the inductive hypothesis s′x(t−1) = sx(t−1). If x
does not change at time t−1 in s then, by definition of s′, the
same is true at s′, and so s′x(t) = s′x(t−1) = sx(t−1) = sx(t).
Assume that the value of x changes at time t − 1 in s,
and let B be the guard that causes the effective firing of x
there. In particular, s(t − 1) |= B. It suffices to show that
s′z(t− 1) = sz(t− 1) for every variable z that appears in B,
since then s′(t − 1) |= B, and by definition of s′ there is an
effective firing changing the value of x in s′ as well. Let z be
such a variable. Since there is an effective firing for x at t− 1
in s, we have by the Successor clause that 〈z, t− 1〉 �s 〈x, t〉.
Since 〈x, t〉 ∈ pasts(T ) we obtain by transitivity of �s that
〈z, t− 1〉 ∈ pasts(T ). Hence, s′z(t− 1) = sz(t− 1) holds by
the inductive hypothesis for z and t− 1, and we are done.

Theorem 1, which we call the Past Theorem, will be an
essential tool in establishing formal properties of QDI circuits.
It is based solely on the asynchrony of the circuits, and is
true for other families of circuits, as well as for asynchronous
distributed systems. Suppose that a firing of y at time t is
allowed only if another variable, say z, has fired. Roughly
speaking, Theorem 1 allows us to conclude that there must
be a firing chain from z’s firing to one on the inputs of y
before time t. This captures an essential aspect of our formal
reasoning about asynchronous circuits.

IV. ANALYSIS OF ISOCHRONIC BRANCHES

Speed-independent (SI), QDI, and DI circuits operate cor-
rectly regardless of the delays on individual gates. In our
definition of computations, an effective firing of a variable can
be postponed by an arbitrary amount of time. This definition
captures the arbitrary gate delay model used by SI, QDI,
and DI circuits. In addition, QDI and DI circuits permit arbi-
trary delays on some (for QDI) or all (for DI) wire segments.
The introduction of an arbitrary delay on a wire segment can
be modeled by adding a buffer on the wire; i.e., by considering

2In fact, the computation could equally continue nondeterministically and
fairly, if required.

the two ends of the wire as separate variables (say x at the
near end of the wire and x† at the far end), and introducing a
pair of production rules x 7→ x†↑ and ¬x 7→ x†↓ that account
for the delay. This amounts to modifying the original circuit
to analyze the impact of delays on wires. After this change,
we need a way to relate computations in the original circuit to
those in the modified circuit.

Let w be a computation of a circuit A′ and suppose that V
is a subset of the variables in A′. The restriction of w to the
variables in V , denoted by w|

V
, is defined to be the sequence

of configurations over V given by (w|
V
)x(t) = wx(t) for every

x ∈ V and t ≥ 0. Notice that if V is a strict subset of the
variables in w, then moving from w to w|

V
can create new skip

steps, since firings on some variables of w are ignored in w|
V

.
If circuit A′ is obtained from A by adding variables, then we
compare their computations by considering how stuttering-free
variants of computations of A relate to stuttering-free variants
of restricted computations of A′:

Definition 3: Suppose that circuit A has variables V and
circuit A′ is obtained by adding variables to V and modifying
the production rules in A. Let s be a computation of A and w
a computation of A′. Then s is said to be consistent with w,
denoted by s ≈ w, if s = w|

V
.

If the circuit A′ is obtained from A by adding variables, s is
a computation of A and w a computation of A′, then s ≈ w
implies that both computations perform the same changes to all
variables of A, and do so in the exact same order. Indeed, if it
is the case both that every computation of A is consistent with
one of A′ and that for every computation s′ of A′ there is a
computation s of A consistent with s′ then, in a precise sense,
circuit A′ exhibits all and only behaviors of the circuit A. In
that case, we can view moving from A to A′ as not modifying
the behavior of the circuit A in an essential way.

A. Stability and Non-interference

We now describe the notions of stability and non-
interference for asynchronous circuits. These notions are the
same as those from [10] and are simply re-stated here using
the terminology we have introduced.

Definition 4 (non-interference): A pair Bu 7→ z↑ and
Bd 7→ z↓ of production rules in a circuit A is non-interfering
if, for every computation s of A, there is no state s(t) of the
computation at which both s(t) |= Bu and s(t) |= Bd. Both
guards are never simultaneously enabled.

Definition 5 (stability): A PR B 7→ z↑ (respectively,
B 7→ z↓) in a circuit A is said to be stable if for all
computations s of A and for all times t ≥ 0, if s(t) |= B
and s(t+ 1) |= ¬B, then sz(t + 1) = 1 (respectively,
sz(t+ 1) = 0).

In a QDI circuit, all production rules are stable and all
gates consist of non-interfering PRs. We will use these two
properties to reason about the impact of wire segment delays.

B. Isochronicity of Branches

In a QDI circuit, a wire segment (or branch) is non-
isochronic if introducing an arbitrary delay on the wire seg-
ment does not modify the behaviors of the circuit. We now
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Fig. 3. Modification of original circuit A (on the left) to A† (on the right)
by the introduction of a single buffer on a branch from x to y.

examine the impact of introducing just one buffer, to model
one wire segment.

Let x be a single variable in an asynchronous circuit A
which is used in a guard for a production rule for variable y,
and let x† be a fresh variable that is not a variable of A.
Consider a new asynchronous circuit A† that is identical to A
except for the following modification:

1) A† contains two new production rules x 7→ x†↑ and
¬x 7→ x†↓;

2) The production rules for y use x† instead of x; and
3) Variables x and x† have the same value initially, so

that s†x(0) = s†
x†(0) in all computations s† of A†.

The modification is illustrated in Fig. 3.

A† has all the same variables as A, and the additional
variable x†. Since V is the set of variables in the circuit A,
the set of variables in A† is given by V ∪{x†}. The question we
ask is: under what circumstances can we view computations
of A† as implementing computations of the original circuit A?
It is straightforward to establish that all original computations
of A still could occur in A†.

Lemma 2: For every computation s of A, there exists a
computation w† of A† where s ≈ w†.

Proof: To construct w†, whenever there is a non-x firing
in the computation s of A we replicate it in the computation w†
of A†. If x changes in s, we replicate the firing in w†, but then
follow that with a step consisting only of a firing of x†.

If the wire segment from x to y is a non-isochronic branch,
then introducing the single buffer on the branch from x to y
preserves stability of all gates in A†. We now show the
consequence of requiring that the newly introduced buffer is
stable.

Theorem 2 (firing loop): If the wire segment from x to y
is a non-isochronic branch, then for every computation w† of
A† where x changes at times t and t′ > t, there is a chain
of firings from 〈x, t+ 1〉 to 〈x, t′ + 1〉 in w† that includes a
change in x†.

Proof: Recall that if variable x changes value at time t,
then its value at t+ 1 is different from the value at t. Let w†
be a computation of A† in which x changes at times t and
t′ > t. By Theorem 1, setting m = t, m′ = t′ + 1 and
T = {〈x, t′ + 1〉} we have that there is a computation u†

of A† in which (a) x changes value at times t and t′,
(b) pastu†(〈x, t′ + 1〉) = pastw†(〈x, t′ + 1〉), and (c) all
changes of variables that occur between times t and t′ are
in pastu†(〈x, t′ + 1〉) = pastw†(〈x, t′ + 1〉). Moreover, all
changes in values in u† between times t and t′ are changes

that occur in w† as well, and so it suffices to establish the
existence of the desired firing chain in u†.

By stability of the gate for x†, the fact that x changed
both at times t and t′ > t implies that x† must change at
some intermediate time t′′ such that t < t′′ < t′. Thus, by
construction of u† we have that 〈x†, t′′ + 1〉 �u† 〈x, t′ + 1〉.
Since x 6= x† we have by Lemma 1 that there must be a
firing chain c from 〈x†, t′′ + 1〉 to 〈x, t′ + 1〉 in u†. Moreover,
since x† is the output of a buffer whose sole input is x, the
fact that x† changes at t′′ means that 〈x, t′′〉 ↪→u† 〈x†, t′′ + 1〉.
Adding this firing of x† at time t′′ to the chain c, we obtain
a firing chain in u† from 〈x, t′′〉 (and since t < t′′ also from
〈x, t+ 1〉) to 〈x, t′ + 1〉 that includes a change in x†. The
claim follows.

The production rules for all variables z 6= y in A†

remain the same as in A, and those for y are obtained from
the PRs for y in A by replacing all instances of x by the
variable x†. Given a configuration c† of A†, we can examine
the configuration c = c†|

V
of A obtained by hiding variable x†.

Clearly, every PR Bz for a variable z /∈ {y, x†} is true at c†

in A† iff it is true at c in A. Moreover, if c†x = c†
x† then every

PR By for y is true at c† in A† iff it is true at c in A.

C. Adversarial Firing Chains

For every computation s of A, there is a consistent w† ≈ s
of A†, by Lemma 2. Therefore, the key question for us to
ask is: are there computations in the new circuit A† that do
not correspond to any computation of A? In Theorem 3, we
establish the following: if A† has a computation w† that is not
consistent with any computation of A, then it must be that:

• The variable y fires in w† at some time m′ in a way
that cannot be replicated in A;

• The reason for this mis-firing is that there is a firing
chain in w† from 〈x, t〉 to 〈y, t′〉 (for some t < t′),
while x† does not change between times t and t′. In
other words, there is a computation where this firing
chain is faster than the buffer on the branch from x
to y; we call this an adversarial firing chain.

The proof uses the following two main steps:

(i) The first step establishes that the earliest point at
which the computations diverge is through a firing of y
that cannot be replicated; furthermore, if this firing
occurs at time m′ then x and x† must have different
values at time m′.

(ii) The second and main step establishes the result, by
showing that if the claim were not true, then there are
computations of A where y is unstable.

Before we formally state the theorem and prove it, we
extend the notion of consistency among computations to relate
finite prefixes of computations.

Definition 6: Suppose that circuit A† is obtained from A
by adding a buffer with output variable x† on the wire from x
to y as described above. For a computation s of A and a
computation w† of A†, we write s ∼m w†, and say that the two
computations are compatible for m rounds, if s(t) = w†|

V
(t)

holds for all t = 0, . . . ,m.



We can now verify, by definition, that:

Lemma 3: Suppose circuit A† is obtained from A by
adding a buffer with output variable x† on the wire from x
to y as described above. For all computations w† of A†, there
exists a computation s of A such that s ≈ w† iff there exists
a computation s′ of A such that s′ ∼m w† for all m.

Proof: Assume that s ≈ w†. By Definition 3 we have
s = w†|

V
. Let β : N → {0, 1} be an indicator function

recording where w†|
V

has non-skip steps; that is, β(t) = 0
if w†|

V
(t + 1) = w†|

V
(t), and β(t) = 1 otherwise. Denote

B(t) =
∑t−1

i=0 β(i), the number of non-skip steps in w†|
V

by time t. Observe that w†|
V
(t) = w†|

V
(B(t)). Because

s = w†|
V

, we have that w†|
V
(t) = s(B(t)). Let s′ be defined

by s′(t) = s(B(t)). By construction, (i) s′ = w†|
V

; (ii) s and s′
only differ in skip steps, so s′ is a computation of A iff s is
a computation of A. Finally, since s′ = w†|

V
, we have that

s′ ∼m w† for all m (by Definition 6). The result follows.

We can now show our main result:

Theorem 3 (adversarial firing chain): Let A be a QDI
circuit and let A† be the circuit obtained by adding a buffer
with output variable x† on the wire from x to y in A. Suppose
that w† is a computation of A† that is not consistent with any
computation of A (i.e., s ≈ w† holds for no computation s
of A). Then there is a firing chain in w† from 〈x, t〉 to 〈y, t′〉
for some times t < t′ that does not include a firing of x†; in
particular, x† is unchanged between t and t′ in w†.

Proof: Assume that there is no computation of A consis-
tent with w†. By Lemma 3, that is equivalent to stating that
there is no computation of A that is compatible with w† for all
rounds. Let m′ > 0 be the largest time for which there exists
some computation of A that is compatible with w† for m′
rounds. Moreover, let s be such a computation of A, for which
s ∼m′ w†.

(i) Since m′ is the largest such time, there must be an
effective firing of a variable of A that takes place at time m′
in w†, and does not take place at time m′ of s. For every
variable z 6= y of A, any guard for z in A or A† only
depends on variables in V—which have the same values
at w†(m′) and s(m′) because s ∼m′ w†. Hence, the only
variable of A that can have an enabled effective firing in
w†(m′) but not in s(m′) is y. Moreover, this is possible only
if sx(m′) 6= w†

x†(m
′). Since s(m′) = w†|

V
(m′), we also

know that w†x(m
′) 6= w†

x†(m
′). Since w†x(0) = w†

x†(0) by
assumption, there must be at least one firing of x in w† before
time m′.

Let m < m′ be the latest time before m′ at which there is
an effective firing of x in w†. Observe that this choice of m
implies that w† does not have an effective firing of x† between
times m+1 and m′. This is because (a) an effective firing of x†
would make x = x†; (b) m is the time of the last effective
firing of x before m′; and (c) w†x(m

′) 6= w†
x†(m

′).

Two scenarios are possible: (SC-a) w†x(m) = w†
x†(m),

variable x fires at time m, and there are no further changes to
x or x† until m′; or (SC-b) w†x(m) 6= w†

x†(m), both x and x†
fire at m, and they both remain unchanged until time m′.

(ii) We now show that 〈x,m+ 1〉 �w† 〈y,m′ + 1〉. As-
sume by way of contradiction that this is not the case. We will
show that this implies the existence of an unstable computation
of A, violating the QDI property of A.

Let B†y denote the guard of the production rule of y in A†

that causes the effective firing at time m′ in w†. Consider the
set T = {〈h,m′〉:h is an input to B†y in A†}, and let u† be
the computation of A† guaranteed to exist by Theorem 1, with
respect to the computation w†, to this set T , and to the times m
and m′. In particular,

• u†(t) = w†(t) holds for t = 0, . . . ,m, which also
means s ∼m u†;

• the only changes in u† after time m and up to m′ are
those that appear in pastw†(T ); and

• u†h(m
′) = w†h(m

′) holds for every 〈h,m′〉 ∈ T .

Since by assumption 〈x,m+ 1〉 6�w† 〈y,m′ + 1〉 it follows
that 〈x,m+ 1〉 /∈ pastw†(T ). Therefore, by Theorem 1, there
are no effective firings of x between times m and m′ in u†.
Since x† is unchanged between m + 1 and m′ in w†, the
construction of u† by Theorem 1 ensures that x† remains
unchanged between m + 1 and m′ in u† as well. Finally, by
choice of m, there is an enabled effective firing of x at u†(m).
However, this firing is postponed by construction of u† using
Theorem 1.

Another useful observation is the following. Because
〈x†,m′〉 ∈ T , we have by the definition of potential causality
that 〈x†, t〉 ∈ pastw†(T ) for all t ≤ m′. Thus, every effective
firing of x† at times m + 1 to m′ − 1 in w† occurs in u†

as well. Therefore, in scenario (SC-a) above, u†
x†(t) = u†x(t)

for t = m + 1, . . . ,m′ since the firing of x is postponed
in u†. Also, in scenario (SC-b) above, u†

x†(t) = u†x(t) for
t = m+1, . . . ,m′ because while the firing on x is postponed,
the x† firing at time m does occur in u†, making the two
variables the same in state u†(m+ 1). Hence u†x(t) = u†

x†(t)
for m < t ≤ m′.

We now construct a computation u of A that is compatible
with u† for m′ rounds as follows. Let u be a computation
of A in which u(t) = s(t) for t = 0, . . . ,m. We construct the
rest of u by induction on t for t = m, . . . ,m′. The induction
hypothesis is that at time t, (a) precisely the variables of A
that fire at time t in u† can fire at time t in u; (b) there is an
enabled effective firing of x at u(t).

Base case t = m: Part (b) is true by construction at t = m.
The guards for any variable z 6= y in A† only use variables
in V , and hence any of those firings that occurs at m in u† can
be replicated in u at m because u(m) = s(m) = u†|

V
(m). If

there is an effective firing of y in u† at m, then we know that
this firing also occurs in w† at m. This means that the firing is
enabled at s(m) in A, because s and w† are compatible until
m′ > m. Hence, the firing of y is also enabled at u(m).

Induction step: Let m < t < m′ and assume inductively that
the claim holds for t; we shall show the claim for t+ 1. Part
(b) holds for t+1, because the original circuit A is stable and
hence the enabled effective firing on x at u(t) stays enabled
at u(t + 1). All firings for z 6= y can also be replicated as
above. Finally, any firing of y can also be replicated, because



u†x(t) = u†
x†(t). Therefore, we have constructed a u such that

u ∼m′ u†, and there is an enabled effective firing of x at
u(m′).

Recall that in both u and u† the variable x does not
change between times m and m′. Thus, ux(m′) = u†x(m

′);
using the relation between x and x† in u†, we conclude
that ux(m′) = u†

x†(m
′). Key properties of the four different

computations used in the proof, s, w†, u†, u, are highlighted
in Table I.

Computation times ≤ m time m time m + 1 to m′

s

all are compatible

x fires compatible with w†

w† (of A†) x fires compatible with s

u† by Thm. 1 firing x postponed x and x† identical
u (of A) firing x postponed compatible with u†

TABLE I. THE FOUR COMPUTATIONS

Observe that the guard B†y is enabled at w†(m′). By
construction of u† in Theorem 1, the variables of T have the
same values at u†(m′) as they do at w†(m′). Thus, the guard
B†y is enabled at u†(m′) as well. Let By be the guard in A that
corresponds to B†y in A†. Since u†x(m

′) = u†
x†(m

′), it follows
that By is true at u(m′) = u†|

V
(m′).

By choice of s and m′, By is false at s(m′) because y
cannot have an effective firing in s at m′. We know that
s(m′) = w†|

V
(m′), and w†(m′) agrees with u†(m′) on all

variables in B†y , and u†|
V
(m′) = u(m′). Hence, u(m′) and

s(m′) agree on all variables in By other than x. Furthermore,
since By is not enabled in s(m′), changing x in state u(m′)
makes By false.

Finally, by the induction hypothesis used in the construc-
tion of u, there is an enabled effective firing of x at u(m′).

We have constructed a computation u of A where (a) the
guard By is true at u(m′), enabling an effective firing of y
there, (b) there is an enabled effective firing of x at u(m′), and
(c) changing x at u(m′) disables By . Thus, y is unstable in A.
However, by assumption, A is a QDI circuit, and so y must be
stable—a contradiction to the assumption that 〈x,m+ 1〉 6�w†

〈y,m′ + 1〉. Setting t = m+1 and t′ = m′+1, it follows that
〈x, t〉 �w† 〈y, t′〉, and x† does not change between t and t′ in
w†, as claimed.

Notice that this proof is based on two notions. That of
stability, which underlies the definition of QDI circuits, and
potential causality, captured by way of Theorem 1.

Since Theorem 3 shows that new, i.e., inconsistent, compu-
tations of A† can only occur in a particular way, any argument
or property that can be used to rule out the scenario established
by Theorem 3 can be used to show that A and A† have
consistent computations. In particular, in a setting in which
there are lower bounds on the time to complete firing chains
and upper bounds on the delay of individual buffers, we have:

Corollary 1: Let x† be an input to y. If the fastest adver-
sarial firing chain from a change in x to y is slower than the
delay of the buffer x†, then for every computation w of A†,
there exists a computation s of A such that w ≈ s.

Corollary 1 shows that satisfying the adversarial path condition
is sufficient for the correct operation of QDI circuits. It is

clear that this condition is necessary, because we can easily
construct example circuits that fail to operate correctly when
the adversarial path assumption is violated. This is precisely
the necessary and sufficient timing condition shown in [6] for
the correct operation of QDI circuits.

D. Identifying Isochronic Branches

As we now show, our mathematical foundations can pro-
vide guidelines for the practice of asynchronous circuit design.
We know from Theorem 3 that the failure of an isochronic
branch timing requirement results from an adversarial firing
chain that is faster than the delay on the branch. Hence, it is
important to identify all the isochronic forks in a circuit during
the design process, so that the implementation can ensure that
this timing constraint is met. As an illustrative example, we
use Theorems 1 and 2 to provide a simple formal proof of a
well-known type of isochronic fork.

Lemma 4: Let A be a circuit where the production rules
for y are Gu 7→ y↑ and (x ∧Gd) 7→ y↓, where both Gu and
Gd do not depend on x. If x changes at least three times in a
computation of A, then the branch from x to y is isochronic.

Proof: Suppose by way of contradiction that the branch
is non-isochronic, and construct A† from A by adding x† as
in Section IV-B. Let s† be a computation of A† in which
x changes three times. Thus, there are times m ≥ 0 and
m′ > m with consecutive firings x↓ at time m and x↑ at m′.
By Theorem 2, between these two changes in x there must
be a firing loop that includes a change in x†. Since the only
variable with input x† is y, there must be a change in y at some
time t satisfying m < t < m′. But x† being false at s†(m′)
means that the firing of y ↑ (the only possible firing of y on
the firing loop) does not use the variable x†. Since the firing of
x† is not in the past of the variables in Gu at m′, we can use
Theorem 1 to construct an alternate computation where x† is
postponed—contradicting the firing loop requirement. Hence,
the branch is isochronic.

V. DISCUSSION

A. Asynchronous Circuits and Isochronic Forks
Satisfaction of a set of delay requirements is an essential

part of the correct operation of general asynchronous circuits.
The “foam rubber wrapper” property was introduced using
trace structures to characterize delay-insensitive communi-
cation [11]. The fact that researchers who were designing
purely delay insensitive circuits were in fact making a timing
assumption on wire forks was first highlighted in [10]. That
paper introduced the notion of isochronic forks, arguing that
they could be used to build more sophisticated asynchronous
circuits than those possible under the assumption of purely
delay-insensitive operation. [8] showed that the introduction of
the isochronic fork was sufficient to build a circuit that could
implement any computable function (modulo finite memory).

Many researchers initially viewed the isochronic fork re-
quirement as a tight constraint on the delay of one branch
of a fork. In particular, the assumption was seen as requiring
that the delay through the branch of an isochronic fork was
less than the delay through another branch plus the delay
of the gate following the other branch. This led to concerns
that isochronic forks were a challenging delay constraint (e.g.
see [13]). Subsequently it was recognized that this constraint



is too strong, and a much weaker constraint is required
for the correct operation of QDI circuits [3], [12]. More
recent work [6] purported to prove that the isochronic fork
requirement can be weakened to an adversarial path timing
requirement. The current paper provides such a proof, and does
so by making use of the well-established notion of potential
causality from distributed systems. We expect the connection
between asynchronous circuits and distributed systems to yield
additional insights into the study of both fields.

B. Connection to Distributed Systems

As far as timing and coordination are concerned, there
is a close connection between asynchronous circuits and
asynchronous distributed systems. The potential causality re-
lation �s we defined in Section II-B is a variant of Lamport’s
happened before relation from his seminal paper [7]. The two
differ in the Successor step, which in Lamport’s case relates
the sending of a message over an asynchronous channel to its
delivery. While �s corresponds to the existence of chains of
firings as captured in Lemma 1, Lamport’s relation corresponds
to the existence of message chains between events at differ-
ent sites. Message chains are the essential tool for creating
information flow and coordinating actions in asynchronous
distributed systems, just as firing chains are for asynchronous
circuits. Indeed, Chandy and Misra showed in [1] that the only
way a site can know about a change that occurs at another site
of an asynchronous system is by way of a message chain.
In a precise sense, firing chains can be shown to play the
analogous role in asynchronous circuits. While we do not
introduce a formal definition of what a node 〈x, t〉 knows
about the circuit (this can be done using the framework of
[4], [2] by viewing the circuit as an asynchronous system),
it is interesting to consider our analysis in these terms. The
fact that a firing chain is necessary in order to inform a node
about the change of value of a different variable is essentially
captured by Theorem 2.

VI. CONCLUSIONS

We adapt the notion of potential causality from the dis-
tributed systems literature, and apply it to study DI and QDI
circuits. We state and prove the past theorem, which uses
potential causality to capture an essential aspect of asynchrony
in circuits. In a simple, trace-based model, we make use of the
past theorem in order to obtain concise proofs of the firing loop
theorem, which is part of the folklore, and of the isochronic
branch theorem. Only a much more complex, and incomplete,
proof of the latter result was previously available.

Our approach provides a foundation for future work on
self-timed circuits since our theory can also incorporate other
timing requirements. We plan to extend this approach to other
timing models of asynchronous circuits, including bounded
delay and relative timing. By using a single framework, we
believe it will be possible to reason about hybrid asynchronous
circuits—those that combine different timing disciplines, and
we view this as a promising avenue for future research.
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APPENDIX

We now give a formal definition of the stuttering-free
variant s of a computation s and show that if s is a computation
of circuit A, then so is s. We proceed as follows. Given a
computation s, we inductively define a function αs : N → N
where, intuitively, αs(k) will be the k’th non-skip step in s.
For the base case, we define αs(0) = 0. Moreover, if s is
a finite computation that performs only skip steps after time
αs(k), then αs(k + 1) = αs(k) (so that αs(m) = αs(k) for
all m > k). Otherwise,

αs(k + 1) = min{k′ > αs(k) : s(k
′) 6= s(k′ − 1)}.

Observe that s(t) = s(αs(t)) = s(αs(t + 1) − 1) holds by
definition of αs. Based on αs, we can define a stuttering-free
variant of the computation s, which we denote by s, as follows:

s(m) = s(αs(m)), for all m ≥ 0.

It is now easy to show:

Lemma 5: If s is a computation of a circuit A, then s is
also a computation of A.

Proof: Fix the circuit A and let V be the set of its
variables. First note that s(t) is a configuration of A for all
t ≥ 0, since s(t) = s(αs(t)) by definition, and s(αs(t))
is a configuration of A for all t It remains to show that
every change of value for a variable in s is a legal (enabled)
firing. So assume that x has an effective firing at time t in s.
Then sx(t) 6= sx(t + 1). Since s(t) = s(αs(t + 1) − 1) and
s(t+1) = s(αs(t+1)), the fact that x has an effective firing at
time t in s implies that it has the same effective firing at time
αs(t+ 1)− 1 in s. Since s is a computation of A, this firing
must be enabled at s(αs(t+1)−1). But s(t) = s(αs(t+1)−1),
and hence the same firing is enabled at time t in s as well.
We conclude that every effective firing in s is enabled when
it occurs, and so s is a computation of A, as claimed.


