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Abstract

We present a Sensor-Network Asynchronous Proces-
sor (SNAP), which we have designed to be both a pro-
cessor core for a sensor-network node and a component
of a chip multiprocessor, the Network on a Chip (NoC),
which will execute a novel sensor-network simulator.
We discuss the advantages of using the same processor
for nodes in physical and simulated sensor networks.
We describe the attributes that a processor must pos-
sess to function well in both roles, and we then describe
the way we designed SNAP to have these attributes.

1 Introduction

Sensor networks are typically comprised of many
low-cost nodes that can be used to gather, process,
and propagate a wide variety of information from the
surrounding environment. Recently, interest has fo-
cused on self-configuring wireless sensor networks and
the unique challenges they pose, such as managing dy-
namic network topologies and maximizing the lifetime
of networks in the context of limited sensor-node en-
ergy budgets [27].

Most of the application development and
communication-protocol design for these sensor
nodes is done using network simulators such as
ns-2 [22] and Glomosim [36]. After the application
and protocol software functions properly in the
simulation environment, it is then deployed on the
actual nodes, each of which contains at the very least
a processing element, a radio interface, and some way
of interacting with its environment. Today’s sensor
nodes typically use commodity microcontrollers for
their processing elements: For example, the Berkeley
TinyOS Motes [14] and UCLA’s MEDUSA-II sen-
sors [34] use Atmel’s low-cost 8-bit RISC AVR series
of microcontrollers, while a more high-end sensor from
Rockwell [35] uses Intel’s StrongARM SA1100 32-bit

controller. Unfortunately, the behavior predicted by
simulation may vary dramatically from that observed
in the real network [15]; researchers must typically
perform several debug-and-test cycles before the
sensor network actually performs as predicted, and
even this has only been achieved for small networks.

Much of the complexity of deploying wireless sen-
sor networks arises due to the disparity between the
simulation and the actual hardware implementation.
Even the most detailed simulation models used in
ns-2 and Glomosim do not accurately model the
hardware limitations—such as limited message buffer-
ing, memory allocation latencies, or processing-time
requirements—of the actual node on which the sen-
sor application will run [4]. Moreover, modifying ns-2
or Glomosim to accurately model these factors would
probably not be useful, as the time required to simu-
late several hundred to several-thousand nodes would
become unreasonably long (and would require a great
deal of memory).

With this in mind, we are developing an inte-
grated hardware simulation-and-deployment platform
for wireless sensor networks, based on a 16-bit message-
passing asynchronous processor called the Sensor-
Network Asynchronous Processor (SNAP). In this pa-
per, we present the design and architecture of SNAP,
which will be used for two main purposes: (1) to be the
main processor for a sensor-network node that we are
designing at Cornell and (2) to be a component of the
Network on a Chip (NoC), a custom chip multiproces-
sor designed for sensor-network simulation [10, 16].

The creation of SNAP will have several benefits for
researchers studying sensor networks:

Faster simulation of large-scale sensor net-
works. SNAP is the main building block of the
NoC, which will be able to efficiently execute parallel
network simulators that use a specific synchronization
protocol, called time-based synchronization (TBS).
(We describe TBS briefly in Section 2.) A simulator



using this protocol will be able to simulate large-scale
sensor networks (i.e. those containing on the order of
100,000 nodes) faster than real time and many orders
of magnitude faster than software simulators [10] .
Fast simulation of such networks will be an invaluable
tool for researchers.

A common software interface. Because we will
use SNAP to build both physical and simulated
nodes, researchers studying sensor networks will be
able to use a single software interface: A researcher
will be able to use the same protocol code for the
simulation and implementation of a given node in a
sensor network.

Evaluation of network simulators. The SNAPs
in physical-network nodes and the SNAPs that sim-
ulate the physical-network nodes will execute almost-
identical programs (the SNAPs in the real nodes will
not need to execute code to simulate radio and channel
layers, because they will have real radios). Therefore,
researchers will be able to easily evaluate the realism of
simulated radio and channel layers by comparing the
behavior of real sensor networks with those simulated
on the NoC. This evaluation of radio and channel layers
will lead to more accurate network simulations; stud-
ies have shown that the results of such simulations are
very sensitive to the parameters used for physical layer
modeling [30].

The rest of this paper reads as follows: In Section 2
we briefly describe TBS and the NoC, and discuss the
attributes that SNAP should posses if it is to exe-
cute a TBS-based simulator. Section 3 describes how
we designed SNAP to have these attributes. In Sec-
tion 4 we describe the implementation details of some
of the more interesting components of SNAP, such as
the instruction-fetch unit and the timer coprocessor.
Section 5 predicts the cycle-time of our processor and
summarizes early simulation results regarding the scal-
ability of TBS-based sensor-network simulations run-
ning on the NoC. In Section 6 we discuss related work
in network simulation, multicomputing, and sensor net-
works. We summarize our work in Section 7.

2 TBS and the NoC

Most network simulators, including the TBS-based
simulator for which we designed the NoC, are discrete-
event simulators. A discrete-event simulator proceeds
by constantly removing the timestamped event from
the head of its time-ordered event queue and then
simulating the effects of the event (we call simulating
the effects of an event “executing” an event). High-

performance simulators use a technique called paral-
lel discrete-event simulation (PDES). Fujimoto [6] pro-
vides a thorough discussion of PDES. Processors in
such a parallel simulation can schedule events in one
another’s queues by passing messages, which contain
events. The processors use a synchronization protocol
to ensure that they always execute all events, including
those received from other processors, in nondecreasing
timestamp order.

Our synchronization protocol, TBS, is unique in
that it requires every processor to execute events at
scaled versions of the events’ timestamps. In other
words, if a processor has an event E with a times-
tamp T in its event queue, it will not execute E until
T > s x t, where t is the real time elapsed since the
simulation began, and s is called the simulation’s time
scale. An event with a timestamp that satisfies this
inequality is said to be ezecutable. If s is greater than
one, then the simulation proceeds faster than real time.

In a TBS-based sensor-network simulation running
on the NoC, each SNAP simulates one node in the
sensor network (this is different from traditional sim-
ulators, in which one processor typically simulates a
large number of nodes [36]). We estimate that a sin-
gle NoC chip will contain 100 SNAPs. These pro-
cessors can pass messages amongst themselves via a
pipelined, asynchronous interconnect [10]. Because re-
searchers often desire to simulate sensor networks con-
taining as many as 100,000 nodes, we have designed
the NoC such that we can gluelessly assemble multiple
chips together for such large simulations. An off-chip
workstation, called the host, controls simulations by
exchanging messages with the SNAPs in the NoC. The
host sends messages to the SNAPs containing infor-
mation such as the code the SNAPs should run for a
given simulation, directions telling the SNAPs when to
start and stop simulations, and simulated sensor data.
The host receives messages from the SNAPs containing
statistics, error information, etc.

In [10], we show that a sufficient condition for cor-
rectness in a TBS-based simulation is that every mes-
sage, containing an event with timestamp 7', must ar-
rive at its destination SNAP while T' < sxt (so that the
destination SNAP may insert the enclosed event into
its event queue before the event becomes executable).
Because of the real-time nature of TBS, a processor
that can correctly simulate, with a time scale greater
than one, one node in a TBS-based simulation of a sen-
sor network can also execute the code for a node in a
real sensor network by using a time scale equal to one
(and replacing the code that simulates the radio layer
with a physical radio).

We require two characteristics of SNAP if it is to
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Figure 1. A high-level depiction of SNAP.

efficiently execute a TBS-based simulation (and there-
fore also act as a main processor for an actual sensor-
network node): (1) the ability to quickly exchange
messages with other SNAPs in the NoC (lower la-
tency for message-passing between processors directly
affects the time scale [10]) and (2) the ability to
easily manage its event queue (“managing” an event
queue includes scheduling events, canceling previously-
scheduled events, and determining when events have
become executable). We would also like the area of
a single SNAP to be as small as possible, so that we
can reach our estimate of 100 processors per chip; al-
though we have designed the NoC such that we can
simulate large networks by connecting several chips (we
will connect these chips using the mechanism described
in [33], we would still like a single chip to contain many
SNAP cores. Moreover, SNAP’s small size will be use-
ful when we use it as a component of a physical sensor-
network node, which will ideally be as small as possi-
ble. In the next section, we discuss the architecture
of the NoC, and describe how we have designed it to
meet our three main goals: fast message passing, easy
event-queue management, and low area.

3 The SNAP Architecture

Figure 1 depicts the components of SNAP. The pro-
cessor core receives messages from the NoC intercon-
nect (or from the sensor-network node’s radio) via
the incoming-message buffer and sends messages to
the NoC interconnect (or the radio) via the outgoing-
message buffer. The executable queue contains tokens
that represent executable events or newly arrived mes-
sages. Tokens can be inserted into this queue by the
incoming-message buffer or by the timer coprocessor,
which the processor core uses to manage its event
queue. The processor core reads from and writes to
the main memory.

In this section we provide a high-level overview of
SNAP. We organize this overview by explaining how

the three requirements from the previous section influ-
ence SNAP’s design. We begin by discussing the as-
pects of the design that were chosen to minimize area.

Note that the following discussion describes the ver-
sion of SNAP that will be used as a part of the NoC. At
the end of the section we will describe the differences
between this version and the version that will be used
in the sensor-network node.

3.1 Minimizing Area

Aspects of our design that were chosen to minimize
area include the following:

e SNAP lacks a cache. The memory requirements
for simulating a single sensor-network node are
modest enough that each SNAP’s memory will be
fairly small, enabling single-cycle reads and writes
even without a cache.

e The processor core does not support virtual mem-
ory or exceptions.

e The processor core does not have a multi-
ply/divide unit or a floating-point unit.

e The processor core has a 16-bit data path. In-
structions can be either 16-bit or 32-bit (single- or
double-word).

e SNAP’s memory is made from asynchronous
DRAM (750 A?/bit[5]), instead of faster-but-less-
dense SRAM (1200\2 /bit) [25].

The use of variable-length instructions makes the
instruction-fetch loop interesting; we shall discuss this
in Section 4.1.

When SNAP boots, the processor core executes a
short sequence of boot code. This code directs the core
to place the first incoming message, called its startup
message, into a certain address in memory, and then
to jump to this address. (The startup message will
presumably come from the host, but could also come
from another SNAP.) The startup message contains all
of the code for the entire sensor-network simulation,
including some initialization code. The last instruction
in this initialization code will be the DONE instruction,
which is the first of the event-manipulation instructions
that we will consider.

3.2 Manipulating the Event Queue
The software running on SNAP issues the DONE in-

struction when it has finished executing one of the fol-
lowing: its startup message, an event, or the code that
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Flgure 2. The executable queue. The incoming-message
buffer and the timer coprocessor insert tokens into a FIFO
queue, called the ezecutable queue. These tokens tell the
processor to which address it should jump after issuing a DONE
instruction.

schedules the event that an incoming message contains.
The DONE instruction tells the processor to wait until
one of two things happens:

e When a previously-scheduled event becomes exe-
cutable, the processor core jumps to a specific ad-
dress that contains the code to execute the event.
When the core finishes executing the event, the
software should issue another DONE instruction.

e When a new message arrives from the intercon-
nect, the processor core jumps to a specific ad-
dress that contains the code to schedule the en-
closed event. When the core finishes scheduling
the event, the software should issue another DONE
instruction.

The processor decides what code to execute after a
DONE instruction by reading tokens from the executable
queue (see Figure 2). Because the DONE instruction can
cause the processor to stall (if the executable queue is
empty), it is somewhat similar to the HALT instruction
in the Amulet3i [7].

The timer coprocessor is a hardware implementa-
tion of the event queue. It contains a set of seven 32-
bit timestamp registers and a 40-bit incrementer. A
timestamp register can be either “on” or “off.” Ev-
ery timestamp register that is “on” corresponds to an
event in the event queue, and contains the timestamp
of that event. A 32-bit, contiguous sample of the in-
crementer corresponds to the scaled version of the cur-
rent time. Whenever the value in a timestamp register
is equal to the sample of the incrementer, the event
corresponding to the timestamp register is executable:
The timer coprocessor inserts a token representing the
event into the executable queue (the token itself con-
tains only a number, which identifies the appropriate
timestamp register), and changes the timestamp reg-
ister to “off.” See Figure 3. When the processor core
removes a token from this queue, it reads the appropri-
ate address from a table (the table has eight rows: one
for every timestamp register, and one for incoming mes-
sages) and sets the program counter to that address.
SNAP’s Instruction Set Architecture (ISA) includes in-
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Figure 3. The incrementer and a single timestamp register.

structions for changing this table. Section 4.3 discusses
the implementation of the timer coprocessor.

The software running on SNAP can adjust the time
scale of the simulation by taking different samples of
the incrementer: Shifting the sample one bit to the left
corresponds to doubling the time scale. To schedule an
event, the software uses an instruction to set a times-
tamp register to the timestamp of the event it wishes
to schedule. The ISA also includes instructions that
turn off timestamp registers (cancel events), and shift
the sample of the incrementer.

3.3 Sendingand Receving Messages

SNAP sends and receives messages via its outgoing-
message buffer and incoming-message buffer, respec-
tively. Rather than adding extra instructions for send-
ing and receiving messages, we use a scheme similar to
that used in the Mosaic Element [13] and in the Raw
microprocessor [31]: Of the sixteen general-purpose
registers in the processor, one, register zero, is always
zero, and another, register fifteen (rl5), maps to the
message queues. The processor core places any value to
be written to r1b into the outgoing buffer, and when-
ever an instruction reads rl5, the processor core re-
moves the value at the head of the incoming buffer and
uses it as the operand in the instruction. For example,
when the processor core executes the instruction ADD
r15, r5, rib, it removes the value at the head of the
incoming-message queue, adds that value to the value
of r5, and sends the result into the outgoing-message
queue (SNAP will block until a value is available at the
head of the incoming-message queue).

If the NoC interconnect is congested, an instruction
writing to r15 (the outgoing-message buffer) will fail—
the processor will skip the instruction. A program
can avoid the processor skipping any instructions by
checking the outgoing-message buffer’s status register,
which contains the number of free spaces remaining in
the outgoing buffer. Programs that send long messages
should check the status register to make sure that there
is enough space in the buffer for the entire message. We
designed this scheme to prevent deadlock in the NoC:



The software can detect when the network is busy, and
therefore prevent itself from being blocked on a send
operation, thereby preventing deadlock.

3.4 SNAP in a SensorNetwork

We will now briefly describe the changes necessary
to use SNAP as a part of a real sensor-network node,
as opposed to a part of the NoC. The main change is
that the incoming- and outgoing-message buffers will
be connected to a real antenna, instead of to the NoC
interconnect. Because this antenna will never be “con-
gested,” this version of SNAP will not need a status
register. The presence of a real radio will also require
several new types of tokens for the executable queue.
The radio interface should place tokens in the queue
whenever certain radio “events” occur, such as the ra-
dio changing modes (radio modes include “transmit-
ting,” “sensing,” “receiving,” etc.), the radio receiving
a packet, etc.

The actual interface between SNAP and the ra-
dio transceiver will consist of a low-speed serial in-
put/output pair of lines, a two-bit control interface to
select the receive/transmit mode, and two lines for the
send and receive clock. Because the off-chip data rates
are low (in the range of 115kbps[26]), there will be
plenty of time to synchronize the sending and receiving
of data with the external clock. Incoming and outgoing
messages will be translated to the off-chip serial format
required by standard RF transceivers [26].

4 Implementation Details

SNAP is composed of quasi-delay-insensitive (QDI)
asynchronous circuits [17]. We chose to use asyn-
chronous circuits because sensor-network nodes typi-
cally have tight energy budgets. Moreover, the design
flow of QDI asynchronous circuits makes them a nat-
ural choice for implementing a parallel network sim-
ulator. In this design flow, a circuit is first specified
as a collection of sequential processes that communi-
cate via message passing. Likewise, a parallel network
simulator can be described as a collection of “logical
processes” that communicate by passing messages con-
taining timestamped events [6].

When designing SNAP, we combined techniques
used in the designs of the Caltech Asynchronous Mi-
croprocessor [20] and in more pipelined processors such
as the MiniMIPS [21] and ASPRO-216 [28]. The Cal-
tech processor is relatively unpipelined and uses com-
munication actions on probed channels to synchronize
access to shared variables; it takes up little area and
is low-power, but is not very fast. The MiniMIPS
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Figure 4. The instruction-fetch unit and the execution unit.

and ASPRO use finely-pipelined circuits to obtain high
throughput; they are less area- and energy-efficient,
but they have much lower cycle times. We chose to
mix the two styles because we wanted SNAP to have
the area- and energy-efficiency of the Caltech Asyn-
chronous Microprocessor while still displaying some of
the throughput advantages of the MiniMIPS and AS-
PRO. To increase throughput, we also employed the
techniques described in [18] for pipelined mutual ex-
clusion.

SNAP’s processor core consists of two parts: an
instruction-fetch unit and an execution unit. The
former fetches instructions and updates the program
counter, while the latter decodes and executes instruc-
tions. Within each unit, we have used a control-data
decomposition design style in which the datapath is
synchronized by dataless communications on slackless,
probed channels [19]. The units communicate with
each other via highly-pipelined data channels; the high
degree of slack on these channels allows the two units to
operate concurrently. Figure 4 depicts these data chan-
nels. The instruction-fetch unit uses the I channel to
send instructions or the value of the program counter
to the execution unit. The execution unit uses the B
channel to send branch information to the instruction-
fetch unit, and, in the case of a jump-register instruc-
tion, uses the TGT channel to send the target address
of the jump. Figure 4 also shows the arbiter that con-
trols access to the first bank of main memory (which
contains data and instructions).

In this section, we discuss the implementation of
the instruction-fetch and execution units. We also de-
scribe the timer coprocessor, and provide an overview
of SNAP’s memory system.

4.1 The Instruction-F etch Unit

SNAP’s instruction-fetch unit performs two opera-
tions: it updates the program counter, and it uses the
new value of the program counter to fetch a line from



memory. One of our main goals in designing SNAP
was to develop an instruction-fetch loop that would
be efficient, despite our choice to support variable-
length instructions. To achieve this goal, we used a
technique similar to that of branch-delay slots: In a
processor that uses single-word instructions and has
a one-cycle branch-delay slot, consider that every in-
struction determines how the processor will update the
program counter after the next instruction. For exam-
ple, a jump-register instruction in the MIPS ISA [9]
indicates that, after executing the instruction in the
branch-delay slot, the processor will change its pro-
gram counter to a register value. Similarly, any arith-
metic instruction indicates that, after executing the
next instruction, the processor will increment the pro-
gram counter by four.

SNAP uses a similar scheme: Rather than having
each instruction indicate how to update the program
counter after fetching the next instruction, each word
indicates how to update the program counter after
fetching the next word. The execution unit performs all
decoding and uses the B channel to send tokens to the
instruction-fetch unit specifying how to perform this
update. For example, consider how the SNAP proces-
sor core will execute an ADDI instruction, which uses
two words (the first specifies the opcode and identifies
two registers, the second is an immediate). After re-
ceiving the first word, the execution unit will send two
tokens on the B channel, both telling the instruction-
fetch unit to increment the program counter by one.
(The execution unit can send both tokens immediately
because the B channel is pipelined.) As a second ex-
ample, consider how the core will execute the JUMP in-
struction, which also consists of two words, the first
containing the opcode, and the second containing the
destination of the jump. After receiving the first word,
the execution unit will send two tokens on the B chan-
nel: The first will tell the instruction-fetch unit to up-
date the program counter with the value of the next
word, and the second to increment the program counter
by one. (The instruction-fetch unit does not send the
second word to the execution unit, since it will use this
word to update the program counter.) Because each
word determines how to update the program counter
after fetching the next word, the instruction-fetch unit
can fetch one word while the execution unit decodes
and executes the previous word.

Figure 5 shows the instruction-fetch unit in detail;
the dashed lines represent control channels, and the
solid lines represent data channels. The Control pro-
cess receives from the B channel tokens that tell it how
to update pc. The pc can be updated with the value
from an incrementer (for a non-branch instruction) or
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Figure 5. The instruction-fetch unit. Dashed lines indicate
control channels; solid lines indicate data channels.
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an adder (for a relative branch), from a token taken
from the TGT channel (for a jump-register instruc-
tion) or the FetchLine channel (for an absolute jump),
or from the executable queue (for a DONE instruction).

Although there are several instructions in the SNAP
ISA that require the instruction-fetch unit to per-
form operations other than incrementing the program
counter, the only one of these that is unique to our
processor is the DONE instruction. When the execution
unit receives the DONE instruction, it sends a token to
the instruction-fetch unit telling it to update the pro-
gram counter based on the value at the head of the
executable queue.

4.2 The Execution Unit

The execution unit contains decode logic, function
blocks, and the register file. The function blocks
include an adder, a shifter, a logic block, a bit-
field block (SNAP’s ISA includes bit-field-set and bit-
field-read instructions [10]), a memory-interface block
(which calculates addresses), a timer-coprocessor block
(which controls scheduling and canceling events), and
a conditional-branch block. An ISA summary is given
in the Appendix. Figure 6 shows the execution unit.

Because its implementation of the execution unit is
very similar to that of the Caltech Asynchronous Mi-
croprocessor’s execution unit, we do not discuss it in
great detail here. The main difference between our
execution unit and the corresponding circuits in the
Caltech Asynchronous Microprocessor is that our exe-
cution unit uses pipelined mutual exclusion [18]. This
technique uses shared lock variables to pipeline control
distribution while preserving mutual exclusion; more-
over, it can be used to implement mutual exclusion
conditions that are conjunctions of pairwise mutual ex-
clusion constraints among processes. Pipelined mutual
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Flgure 6. The execution unit. Busses are shown in gray.
Note that the two read busses and one of the write busses
connect to the incoming- and outgoing-message buffers, re-
spectively.

exclusion is similar to the register locking used in the
Amulet 1 [24] but more general in terms of conditions
and amount of decoupling permitted, and results in
QDI circuits. These techniques allow for greater paral-
lelism between different function blocks than was pos-
sible in the Caltech Asynchronous Microprocessor.

4.3 The Timer Coprocessor

The timer coprocessor contains a self-incrementing
counter, which holds a scaled version of real time. The
rest of the coprocessor must be fast enough to keep up
with the rate at which the incrementer changes: Every
timestamp register must be compared against the in-
crementer every time the incrementer’s value changes.
In this section, we describe how we have designed the
coprocessor to meet this throughput requirement.

Although the timer coprocessor must compare ev-
ery timestamp register against the value of the incre-
menter every time the incrementer changes, it does not
have to finish the comparisons before the incrementer
changes again: We can pipeline the comparison pro-
cess such that one set of comparisons (the comparisons
between every timestamp register and one value of the
incrementer) completes every cycle. Figure 7 depicts a
portion of the incrementer and a single timestamp reg-
ister. The coprocessor is made up mostly of multiple
instantiations of three basic circuits:

1. The incrementer processes are essentially the same
as those of a normal incrementer, except that they
send copies of their values to the shift units after
every cycle. These processes propagate high or low
carry-out values.

2. The shift units route the values of the incre-
menter processes to the values of the correspond-

ing timestamp-register processes (TSRPs). A shift
unit determines to which TSRP to forward values
based on the time scale used for the simulation.
Shift units only forward values to TSRPs that cor-
respond to timestamp registers that are “on.”

3. The TSRPs contain the values of the timestamp
registers. Every cycle, each TSRP compares its
value against the value it received from its corre-
sponding shift unit.

The incrementer processes and the TSRPs contain 2-
bits per process, using a 1-of-4 code.

A timestamp register is equal to the value of the in-
crementer if each TSRP’s value is equal to the value it
receives from its shift unit. This logical AND computa-
tion ripples from the lowest-order to the highest-order
TSRP: Each TSRP ANDs the result of its compari-
son with a boolean value it receives from the TSRP on
its right, and forwards this result to the TSRP on its
left. If the value forwarded by the highest-order TSRP
is true, the timer coprocessor inserts a token into the
executable queue, and sets the appropriate timestamp
register to “off.”

Figure 7 shows the TSRPs that correspond to only
a portion of a single timestamp register. In the actual
timer coprocessor, each shift unit may make as many
as seven copies of the value from the corresponding
incrementer process. Figure 7 also omits the channels
that allow the processor core to write the values of the
TSRPs, and turn timestamp registers on and off.
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Flgure 7. A portion of the timer coprocessor. The coproces-
sor is pipelined horizontally: Every time the lowest-order-bit
incrementer process receives a carry-in signal, the highest-
order-bit timestamp-register process sends a boolean value.

The lowest-order-bit incrementer process (LOBIP)
receives its carry-in signal from a synchronous process,
with which it completes a full QDI handshake. To the
LOBIP, this synchronous process is indistinguishable
from another incrementer process, as long as the LO-
BIP finishes the handshake before synchronous circuit
begins the next increment operation. The entire timer
coprocessor is highly-pipelined so that it can achieve



throughput high enough to enable one comparison to
complete every time the incrementer changes its value.

4.4 The Memory System

Although SNAP has only one memory, which con-
tains instructions and data, its memory has two banks.
The instruction-fetch unit can only fetch words from
the first bank, and the execution unit can read from
and write to both banks. We adopted this scheme so
that the execution unit could execute load and store
instructions that access the second bank completely in
parallel with the instruction-fetch unit reading words
from the first bank. The first bank uses an arbiter to
allow shared access between the instruction-fetch unit
and the execution unit.

5 Preliminary Results
5.1 Network-Simulation Results

Before designing SNAP, we designed asynchronous
circuits that simulate two networks using different
medium access control (MAC) protocols. The first net-
work contains nodes that use the slotted Aloha MAC
protocol and multiple-packet reception radios [23],
while the second contains nodes that use the IEEE
802.11 distributed coordination function (DCF) [8]
MAC protocol. Designing and simulating these circuits
validated our idea that we could use QDI asynchronous
circuits to simulate sensor networks [16].

The first circuits we designed simulated the slotted-
Aloha networks described in [23]. The values of cer-
tain statistics (end-to-end throughput, latency, etc.)
that we obtained from simulatin these circuits exactly
matched those produced by the Matlab program used
for [23]. The circuits we created for these simulations
were very similar to the NoC: They consisted of grids of
processing elements (each of which simulated a single
node in the network) that communicated by passing
messages via a mesh interconnect. The main differ-
ence is that the processing elements were custom cir-
cuits (which implemented the slotted Aloha protocol)
instead of general-purpose SNAPs.

The circuits that simulated the 802.11 network were
similar to those that simulated the Aloha network,
except that the processing elements implemented the
802.11 MAC protocol. Our results matched exactly
against those produced by the simulator used by the
authors of [1].

Results from [10] indicate that the execution time
of a TBS-based sensor-network simulator running on

the NoC should remain constant as we vary the num-
ber of nodes: We estimate that the NoC will be able
to simulate typical network scenarios 22 times faster
than real time, regardless of the number of simulated
nodes. Such scalability would be much better than
that of conventional parallel simulators [36]. Part of
our future work is to evaluate the performance of more
traditional network simulators running on the NoC.
The factor that ultimately limits the NoC’s time
scale is the ratio of the physical time required to pass
messages between SNAPs via the NoC’s interconnect
to the time for a simulated node to change its antenna
from receiving mode to transmitting mode (the latter
time is specified as 5us for nodes using the IEEE 802.11
DCF [8]). Decreasing the NoC interconnect’s latency
or increasing the simulated nodes’ transmitter-turn-on
time will increase the time scale of the simulation [10].

5.2 ProcessoiPerformance Results

An early, unoptimized version of our instruction-
fetch unit operates with a cycle time of between 30
and 40 transitions, depending on the value of the pro-
gram counter (the latency of the incrementer depends
on the value of the program counter). Preliminary
SPICE results from an auto-generated layout with a
single fixed stack size for each gate suggest a through-
put of 326MHz in TSMC’s 0.18um process for this
fetch unit. Optimizing the layout should allow us to
decrease SNAP’s cycle time greatly. The DRAM mem-
ory should not be a limiting factor as we have demon-
strated an interleaved on-chip memory running at over
500MHz [5]. In addition, our simulations show that
the SNAP nodes will be idle 80-90% of the time across
a variety of network scenarios. Therefore, SNAP will
spend most of its time waiting to complete a DONE in-
struction. The asynchronous nature of the processor
will cause all switching activity to cease in this state,
conserving energy for the sensor node. Because we have
not yet completed layout of our processor, we do not
have any energy or area estimations.

6 Related Work

The work related to this project comes in three fla-
vors: network simulators, multicomputers, and sensor-
network nodes.

The most commonly-cited network simulators in pa-
pers addressing sensor networks are ns-2 [22], Glo-
mosim [36], and Opnet [3]. Of these, only Glomosim
is a parallel simulator. The only simulators capable of
simulating large-scale sensor networks are Glomosim,
Qualnet [29], and the Simulator for Wireless Ad Hoc



Networks (SWAN) [12]. Although the performance of
these parallel simulators scales with network size much
better than the performance of sequential simulators,
none of them is able to simulate large-scale networks
faster than real time.

The chip multiprocessor which most-closely resem-
bles the NoC is the MIT Raw processor [32]; a single Raw
processor “tile” is analogous to SNAP. However, SNAP
adds architectural enhancements specifically designed
for network nodes, such as bit-field-manipulation in-
structions. SNAP also lacks floating point and mul-
tiply /divide capabilities, and uses DRAM for its on-
chip memory. SNAP bears some similarity to the J-
Machine [2] and Mosaic [13], which are message-passing
multiprocessors, but which lack the capabilities of the
timer coprocessor.

Wireless sensor networks such as those based on
Berkeley’s Motes [14] utilize low end microcontrollers
from Atmel, while more higher performance sensor
nodes utilize microprocessors such as Intel’s Stron-
gARM [35]. Although using commodity off-the-shelf
components for sensor nodes reduces the initial hard-
ware deployment cost, we predict that our use of the
same hardware platform for both simulation and de-
ployment will make the end network more predictable
and reduce the debugging time. SNAP is also op-
timized for common operations in network protocols
with instructions that allow event queuing.

7 Summary and Future Work

We have presented the design of a Sensor Network
Asynchronous Processor (SNAP). This processor will
be the basis for a wireless sensor-network node and a
component of a chip multiprocessor, the Network on a
Chip (NoC), which will be used for sensor-network sim-
ulations. We have described how we designed SNAP to
meet three main requirements—low area, fast message
passing, and efficient event-queue management—that
will enable it to serve as both a physical and simulated
network node.

At this point we have completed the high-level de-
sign and much of the low-level design (production
rules [17]) of SNAP. We plan to finish laying out the
processor in early 2003. We are also currently design-
ing the physical sensor nodes that will use SNAP, and
the simulator that will run on the Network on a Chip.

When we have completed our sensor networks and
our network simulator, we plan to use them as a test
bed for studying sensor-network applications, and for
evaluating the realism of simulated radio and channel
layers. We also plan to explore new sensor-network
routing protocols that could take advantage of the

faster-than-real-time speed of network simulators run-
ning on the NoC.
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A SNAP-specific Instructions

Our ISA includes non-standard instructions for ma-
nipulating sets of bits within registers, and for manag-
ing the event queue. A summary follows.

A.1 Bit-field Instructions

e BFS dst srcl hi lo. (Bit-field set)
regldst][hi : lo] := regl[srci].
The 16-bit immediate indicates the range of
reg[dst] that should be set to the value contained
in reg[src1]. This instruction should be useful for
constructing messages.

e BFR dst srcl hi lo. (Bit-field read)
regl[srcl] := regldst][hi: lo].
The 16-bit immediate indicates the range of
regldst] that should be placed in regl[srci].
This instruction should be useful for reading mes-
sages.

A.2 Event-gueue-managemeninstructions

e SCHEDULE id, hi, lo.
timestamp register[id][31 : 16] := reg[hi].
timestamp register[id][15 : 0] := reg[lo].
Also turns “on” timestamp_register[id].

e CANCEL id.
Turns “off” timestamp register[id].

e TIMESCALE id.
Chooses the contiguous 32-bit sample of the incre-
menter to which the timer coprocessor will com-
pare to all of its timestamp registers. The value
of reg[id] tells the timer coprocessor which bit of
the incrementer will be the lowest-order bit of the
sample.
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