
Static Power Reduction Techniques
for Asynchronous Circuits

Carlos Ortega, Jonathan Tse, and Rajit Manohar
Computer Systems Laboratory

School of Electrical and Computer Engineering, Cornell University
Ithaca, NY 14853, U.S.A.

{cto3, jon, rajit}@csl.cornell.edu

Abstract—Power gating techniques are effective in mitigating
leakage losses, which represent a significant portion of power
consumption in nanoscale circuits. We examine variants of two
representative techniques, Cut-Off and Zig-Zag Cut-Off [1], and
find that they offer an average of 80% and 20% in power
savings, respectively, for asynchronous circuit families. We also
present a new zero-delay (ZDRTO) wakeup technique for power
gated asynchronous pipelines, which leverages the robustness of
asynchronous circuits to delays and supply voltage variations.
Our ZDRTO technique offers a tradeoff between wakeup time
and static power reduction, making it suitable for power gating
pipelines with low-duty cycle, bursty usage patterns.

Index Terms—asynchronous logic circuits; leakage currents;
very-large-scale integration; pipeline processing; power gating

I. INTRODUCTION

Reducing power consumption has become very important
in recent years due to increases in transistor density and clock
frequency as well as consumer trends in high-performance,
portable, and embedded applications. Dynamic power losses
are significant, but can be mitigated by techniques such as
clock gating, which reduces the power consumption of idle
sections of synchronous circuits [2]. Asynchronous designs
offer this advantage inherently, as they are data driven and
are only active while performing useful work. In other words,
asynchronous circuits implement the equivalent of a fine-
grained clock gating network. However, while dynamic power
losses have been dominant in the past, static power loss
has become a major contributor to power consumption in
nanoscale technologies [3,4] due to leakage currents:

• Source-to-Drain (Isd) leakage, also known as subthresh-
old leakage, has increased due to recent reductions in
threshold voltages [5].

• Gate-to-Channel (Ig) leakage manifests as bidirectional
electron tunneling between the substrate and gate through
the gate oxide [5,6], which has increased due to shrinking
gate oxide thickness.

• Source/Drain-to-Substrate (Iinv) leakage currents are an-
other name for the reverse-bias currents between a tran-
sistor’s active regions and bulk [5].

There are a wide array of techniques designed to reduce
leakage currents [7–9]. The most effective techniques involve
power gating circuits, essentially cutting the pull-up network
(PUN) and pull-down network (PDN) off from one or both
power rails during idle or “sleep” periods. During active

periods, the circuit is reconnected to the power rails in a
process known as “wake up” or power up. While power
gating has been adapted for use in asynchronous circuits
[1,10,11], most of these efforts involve direct application of
synchronous techniques to asynchronous systems. As such,
the unique capabilities of asynchronous circuits have not been
fully leveraged in the context of power gating.

Many asynchronous circuit families are robust to a wide
range of supply voltages, ambient temperatures, and process
variations. We exploit this robustness in the context of power
gating to enable a zero-delay wakeup scheme for pipelined
computation: the first token traveling through a pipeline turns
on downstream pipeline stages, hiding the latency cost of wake
up in the computation time of upstream pipeline stages.

Synchronous circuits cannot take full advantage of such
aggressive power gating control schemes, as local supply
voltages must reach nominal values to prevent the synchronous
circuit from violating its timing requirements, e.g. setup/hold
constraints on state-holding elements. Therefore, inputs can
only be applied to a pipeline stage once the supply voltage
has reached an acceptable threshold. By leveraging the supply
voltage operating range of asynchronous circuits, we can avoid
this requirement and begin useful computation before the
supply voltage has stabilized, reducing the forward latency
seen by the first input token.

Section II presents a general overview of the two main
classes of power gating techniques: (i) Non-state preserving,
and (ii) State-preserving. Asynchronous circuits contain many
pseudo-static gates, and robust circuit families like quasi-delay
insensitive (QDI) asynchronous logic contain a significantly
higher number of pseudo-static gates than an equivalent syn-
chronous computation. To this end, we discuss the imple-
mentation details of power gating asynchronous circuits in
section III, which focuses on applying non-state preserving
and state preserving techniques to pseudo-static elements.
Our evaluation of these techniques is given in section VI. In
section IV, we formalize the aforementioned zero-delay turn-
on power gating control methodology, which we call Zero-
Delay Ripple Turn On (ZDRTO), and discuss our method of
empty pipeline detection, a key component in power gating.
Finally, in section VII, we present the results of our evaluation
of ZDRTO, as well as a discussion of appropriate use cases.

II. RELATED WORK

Power gating techniques essentially increase the effective
resistance of leakage paths by adding sleep transistors between
transistor stacks and power supply rails. Oftentimes, these
power gating or sleep transistors are shared amongst multiple
logic stacks to reduce the number of leakage paths as well
as area overheads. Sharing the transistors effectively creates
two new power nets: Gated-Vdd (gvddv) and Gated-Ground
(gvssv), which replace VDD and GND for power-gated logic
stacks. gvddv is connected to VDD using a head sleep transistor
and gvssv is connected to GND using a foot sleep transistor.

PUN PUN PUN

PDN PDN PDN

sleep

VDD

0 “1” “gvssv” “1”

gvssv

Fig. 1. Cut-Off (CO) power gating using a foot sleep transistor, which is
shared by several logic blocks. The output nodes tend to drift to gvssv, which
itself drifts towards VDD .

Regardless of which rail is gated, the power gating or sleep
transistor(s) should be made very large to meet the current
draw of the circuit in active mode [7]. Typically, only one rail
is gated due to area constraints. An nMOS foot transistor, as
seen in Fig. 1, is preferred due to its greater drive strength—
hence decreased area—compared to a pMOS transistor. To
reduce the leakage even further, high-Vt thick gate-oxide
devices are commonly used as power gating transistors.

A. Non-State Preserving Power Gating

Non-state preserving techniques destroy state by allowing
internal nodes to uniformly drift towards one of the power
rails. This general class of power-gating techniques has various
implementation methodologies:

• Cut-Off (CO): Both the logic and sleep transistors are
implemented using regular-Vt devices.

• Multi-Threshold (MTCMOS): The logic is implemented
using low-Vt transistors and the sleep transistors are
implemented using high-Vt devices. This configuration
allows the logic to be fast during active mode and
the sleep transistors to properly cutoff source-to-drain
subthreshold leakage currents during idle mode [12].

• Boosted-Gate (BGMOS): As in MTCMOS, BGMOS uses
low-Vt logic, but very high-Vt thick-oxide sleep transis-
tors, which hurt active mode performance. To mitigate
this, the gate of the sleep transistor is driven above VDD

during active mode to improve current drive capability
[13].

• Super Cut-Off (SCCMOS): The gate of the sleep tran-
sistor is driven past the supply voltages—above VDD

or below ground—during idle periods by using a bias
voltage [14]. However, wake up time is increased with
respect to schemes which do not over-drive the gate.

With the exception of Cut-Off power gating, all of these
techniques require the foundry to provide devices with differ-
ent thresholds and oxide thicknesses. Most modern CMOS
processes have transistors with multiple threshold voltages
available. BGMOS and SCCMOS require a bias voltage gen-
erator, e.g. a switched capacitor circuit, which increases the
strain on the gate of the sleep transistor, and may introduce
some undesirable parasitic effects such as latchup. To mitigate
the increased strain on the gate of the sleep transistor, it
is desirable to have thick-oxide devices [14]. However, the
power consumed by the bias generation circuitry could offset
the power savings from power gating, especially in ultra-low
power systems or systems where the number of power-gated
transistors is small. We examine the power consumption of
simple bias generators in section VI.

The primary disadvantage of these techniques is that the
state of internal nodes is lost. For example, in Fig. 1, the
inputs to the first stage while idle are logic 0, and the output
of the first stage is logic 1. However, if we assume that the gate
(Ig) and the source-to-drain (Isd) leakage currents are greater
than the reverse-bias source/drain-to-substrate (Iinv) leakage
current, i.e. Ig + Isd > Iinv , the output of the second logic
stage drifts to gvssv. In fact, over a long time period all CO
power gated output nodes will drift to gvssv, as discussed in
section VI.

B. State Preserving Power Gating

State preserving power gating techniques reduce leakage
while retaining state. The tradeoff between these techniques
and non-state preserving techniques is that they are not as
effective at reducing leakage currents.

One technique, Variable Threshold (VTCMOS), varies tran-
sistor threshold voltages by biasing the substrate. By enforcing
lower threshold voltages in active mode versus idle mode, this
method retains performance while active and reduces leakage
while idle. However, as with SCCMOS, the VTCMOS scheme
requires a bias voltage generator, as well as the use of triple
well processes [15]. VTCMOS does have the advantage of
not requiring additional transistors aside from those used for
control and bias generation.

If the idle state of a circuit is known at design time, and
the area overhead of adding sleep transistors is acceptable,
we can employ the Zig-Zag Cut-Off (ZZCO) power gating
technique [16]. As in non-state preserving techniques, ZZCO

introduces two power nets: Gated-Vdd (gvddv) and Gated-
Ground (gvssv). Rather than gating every logic stage in the
same fashion, the selection of head or foot transistor is
governed by the desired logic level of the output node.

PUN PUN PUN PUN

PDN PDN PDN PDN

VDD VDD

VDD

gvssv

gvddv

sleep

sleep

0 1 0 1 0

Fig. 2. Zig-Zag Cut-Off (ZZCO) using a pair of sleep transistors, which are
shared between several logic blocks. The configuration of sleep transistors
restores the output nodes to the appropriate idle state values.

sleep

sleep

1 0 1

VDD

VDD

S1

S2

M2M1

M4M3

L2 L1

Fig. 3. Sneaky gate leakage paths in Zig-Zag Cut-off (ZZCO). The sleep
transistors are shared between several logic blocks. For clarity, the substrate
connections are shown for M2 and M3.

As shown in Fig. 2, gvddv and GND are used as power
rails for logic blocks with a logic 0 output when idle and
VDD and gvssv for blocks with a logic 1 output when idle.
In other words, if the desired idle output is 0, cut off the
stack from VDD, and vice versa for an idle output of 1. The

ZZCO scheme can be combined with other techniques used
in non-state holding power gating schemes as well, such as
biased control signals as in ZSCCMOS [17] and BGMOS, or
devices with different thresholds as in MTCMOS.

The primary disadvantage of ZZCO is the presence of
sneaky-leakage paths; not all paths from the output nodes to
the power rails are disabled. The primary leakage mechanism
is through the gates of neighboring stacks. Consider, for
example, two inverters using ZZCO power gating as shown in
Fig. 3. Even assuming that sleep transistors S1 and S2 provide
perfect cutoff from the power rails, there are two essentially
equivalent paths: L1, from VDD to GND through the gate
of M2, and L2, from the input to GND through the gate
of M3. Note that the gate-to-body voltage of the transistors
(|Vgb|), specifically M2 and M3, is essentially |VDD|. As the
gate leakage is exponentially dependent on the electric field
(voltage) across the gate, i.e. Vgb, ZZCO is not particularly
effective at mitigating gate leakage currents.

III. ASYNCHRONOUS POWER GATING

A. Pseudo-Static Logic Overview
The production rules for an operator with a pullup network

pun , pulldown network pdn , and output node z are shown
below:

pun 7→ z↑ pdn 7→ z↓

Such an operator is non-interfering and combinational if
pun ≡ ¬pdn . The weaker constraint of ¬pun ∨¬pdn ≡ true,
denotes a non-interfering, dynamic operator. Adding a stati-
cizer to the output node, z , of a dynamic operator ensures
the output is always driven. Such an operator is known as a
pseudo-static gate.

PUN PUN

PDN PDN

VDD

VDD

VDD

z z zz

M4

M3

M1

M2

(a) (b)

Fig. 4. (a) Pseudo-Static CMOS Gate, (b) Weak Feedback Inverter

An implementation of a generic pseudo-static operator is
shown in Fig. 4a. The statizicer consists of two cross-coupled
inverters attached to node z . Note that there is always opposi-
tion to any change in z due to the feedback inverter. To ensure

correct operation, the transistors of the feedback inverter must
be sized to be weaker than the logic stacks of the operator.
Furthermore, the feedback transistors add parasitic capacitance
to the output node. To mitigate this effect, each feedback
transistor is split in two, as shown in Fig. 4b. The feedback
stack now consists of a minimum sized transistor closer to
the output, M1(M2), and a long transistor closer to the power
rails, M3(M4). In order to reduce the load on node z , the
gates of the long transistors, M3(M4), are usually connected
to VDD(GND) or to Reset(Reset).

B. Non-State Preserving

Any of the previously discussed non-state preserving tech-
niques can be applied to pseudo-static logic. However, waking
up a circuit without resetting all its pseudo-static elements into
known, safe states could result in incorrect circuit behavior,
or even the potential for stable short-circuits between power
rails.

This problem is not unique to power gating—in fact, it is a
concern during the initial power up of asynchronous circuits,
which use pseudo-static gates. Fortunately, the addition of reset
transistors to initialize the appropriate circuit nodes is a viable
solution. In the case of power up, the signals which drive the
gates of these reset transistors are generated off-chip. However,
initial power up is a global event. As the off-chip environment
is unaware of the entire internal state of the chip, generating
reset signals for each individual power gated circuit off-chip
would prove to be practically impossible, even just considering
package pins as a limitation.

To ensure correctness and safe operation, each power gated
circuit requires its own self reset circuitry. In our asynchronous
design methodology, we use transistors both in series and
in parallel with pullup and pulldown stacks. To control the
parallel and series reset transistors, we use pReset and sReset
signals and their complements, respectively. While the order
and delay between asserting pReset and sReset is flexible,
pReset must be deasserted before sReset to prevent any short
circuits between power rails. A typical reset sequence is as
follows:

1) Assert pReset , sReset , and their complements and hold
them until all the circuit output nodes have been charged
to their appropriate safe states.

2) Deassert pReset and its complement.
3) Deassert sReset and its complement.
Note that in order for the self reset circuit to be QDI,

it would have to instrument every output node in order to
determine whether or not it has reached the appropriate safe
state during step 1 above. This endeavor quickly becomes
very costly in transistor count, area, complexity, and power. A
similar argument applies for determining the appropriate delay
between steps 2 and 3 above. As such, the self reset circuit we
propose is not QDI, but instead relies on the timing assumption
that a delay line, tailored to the circuit being reset, is sufficient
to guarantee safe reset of all internal circuit nodes. Again, a
similar argument involving a delay line between steps 2 and
3 applies.

95 100 105 110 115 120 125
0

0.5

1

1.5
(a) safe

V
o
lt
a
g
e
 (

V
)

95 100 105 110 115 120 125
0

0.5

1

1.5
(b) sleep

V
o
lt
a
g
e
 (

V
)

95 100 105 110 115 120 125
0

0.5

1

1.5
(c) sReset and pReset

Time (ns)

V
o
lt
a
g
e
 (

V
)

sReset pReset

Fig. 5. Self reset circuit behavior immediately after sleep goes low.

Upon deasserting the sleep signal, i.e. waking up the circuit,
the self reset circuitry will assert sReset and pReset in that
order, then deassert them in reverse order as seen in Fig. 5.
The timings between these transitions are controlled by delay
lines. Note that pReset should be held long enough to account
for the charge/discharge latency of the local supply rails—i.e.
gvssv—and the worst case reset latency. Depending on process
variations, it may be desirable to further increase the hold time
of pReset. In fact, it is advisable to layout the delay line as
close to the logic as possible in order to replicate localized
systematic process variations. Once the self reset sequence is
complete, a safe signal is raised, as seen in Fig. 5a.

From the time the circuit has been power gated until the
circuit completes its internal self reset, the outputs of the
gated circuit are undefined. If the rest of the pipeline is
operating, these undefined outputs should not corrupt the
rest of the system, particularly pipeline stages which have
been fully woken up. This impacts both the pipeline stage
inputs—through acknowledge signals—and outputs—through
data signals. Isolation circuits are introduced to make sure
that all output signals from the power gated block remain in a
well-defined state. Adding isolation circuits to the input of a
stage prevents signals from interfering with the self reset of a
stage, and isolation circuits on the output prevent any glitches
from propagating to other pipeline stages during the self reset
stage.

C. State Preserving

Our state preserving power-gating scheme is based on the
Zig-Zag Cut Off (ZZCO) power gating scheme studied in
[1], as it offers a good tradeoff between power savings and
performance degradation for this class of power gating. In
idle mode, we know there are no inputs and that all logic
blocks have finished computation. Therefore, each individual
logic block is waiting for data. By analyzing the handshaking
expansions of each process, we can ascertain the value of most
signals in the idle state. One exception involves the case of

two-phase handshakes where the number of handshakes is not
guaranteed to be even. Nevertheless, for most cases, we can
use Zig-Zag power gating by connecting all the logic blocks
whose output is logic 1 to gvssv and all the nodes whose
output is logic 0 to gvddv .

In order to efficiently power gate pseudo-static operators,
we gate the forward inverter of the staticizer in addition
to the logic stacks depending on the idle state output of
the logic. Essentially, pseudo-static Zig-Zag Cut-Off (ZZCO)
power gating adds sleep transistors to the logic stack and the
feedback transistors of pseudo-static operator shown in Fig.
4b.

We can reduce the leakage through the feedback inverter by
connecting the gates of M3 and M4 to gvddv and gvssv, as
shown in Fig. 6a. Alternatively, their gates could be connected
to the sleep signal directly, as in in Fig. 6b, but the area
penalty would be high because the sleep signal would need to
be routed individual staticizers, as opposed to just the shared
sleep transistors. We refer to the technique of driving the gates
of M3 and M4 with gvddv and gvssv as Zig-Zag Cut Off with
Weakened Staticizers (ZZCO-WS).

Note that the only difference between ZZCO and ZZCO-WS
is between which signals drive the gates of M3 and M4. Thus,
the area overhead for implementation of ZZCO-WS versus
ZZCO is negligible, as all the supply nets—i.e. gvssv, gvddv,
GND, and VDD—are locally accessible to each layout cell.

PUN PUN

PDN PDN

VDD VDD

sleep sleep

sleepsleep

z zz z

gvddv

gvddv

gvssv

gvssv

gvssv

gvddv

sleep

sleepM4

M2

M1

M3

S1

S2 S2

S1M4

M2

M1

M3

(a) (b)

Fig. 6. Zig-Zag Power Gating with Weakened Staticizers (ZZCO-WS) using
(a) Virtual Power Rails or (b) Sleep Signals

IV. CONTROL CIRCUITRY

In this section, we present our power gating control tech-
niques for wake up and empty pipeline detection. These
techniques are power gating scheme agnostic and can be used
with any of the schemes outlined in sections II and III.

A. Zero-Delay Ripple Turn On

Our Zero-Delay Ripple Turn On (ZDRTO) power gating
scheme allows the wake up latency of downstream pipeline
stages to be hidden by the computation latencies of upstream
stages, hence wakeup is “zero delay.” This sequential or

“ripple” turn on also minimizes the voltage fluctuations such
as ground bounce that often occur during wake up of power
gated circuits [18].

The CHP [19] process below describes an asynchronous N
stage pipelined computation:

P ≡ *[L0?x0;L1!f0(x0)]
‖ . . .
‖ *[Ln?xn ;Ln+1!fn(xn)]

We group these pipeline stages into clusters, each with its
own local gvssv and gvddv power nets and associated sleep
transistors, allowing us to power gate each cluster individually,
as shown in Fig. 7. The ripple turn on effect occurs upon
arrival of an input token to program P . At this time, we
wake up the first cluster, which wakes up the second cluster,
and so on. This continues as the token travels through the
pipeline with cluster i waking up cluster j, until the last cluster
is active. Note that i and j do not have to be consecutive
clusters—a token arriving at cluster i could potentially wake
up the next few clusters.

P P P PP P P P

C C C

Sleep
Ctrl

Sleep
Ctrl

Sleep
Ctrl

Fig. 7. Block diagram of our Zero-Delay Ripple Turn On (ZDRTO) power
gating control scheme. A sample pipeline of 8-stages is divided into three
unequal clusters: C0, C1, and C2. Each cluster controls the power gating of
the next inline cluster. With respect to Eq. 1, j = i + 1.

In order to achieve the “zero-delay” effect, the cluster
grouping should be chosen so that the forward propagation
delay, tfp(i, j), from cluster i to j hides the latency, tw(j), of
waking up cluster j, as seen in Eq. 1.

tw(j) ≤ tfp(i, j) ∀{i, j|i < j} (1)

Achieving this requirement is not difficult in modern pro-
cesses, especially for low duty cycle pipelines. Note that the
value of tw is variable, as asynchronous circuits have a wide
operating voltage range. Furthermore, by selecting different
power gating techniques the value of tw is coarsely tunable.
A conservative choice of tw such that gvssv and gvddv are
equal to GND and VDD, respectively, for any particular cluster
by the time the first token arrives—with the exception of the
first cluster—ensures each cluster is ready to perform useful
computation the moment data arrives. This is the origin of the
“zero-delay” latency hiding effect. A more aggressive choice
of tw such that gvssv > GND and gvddv < VDD results
in additional power savings at the cost of a longer forward
propagation delay of the first tokens for that cluster—and a
longer pipeline latency overall. Correctness and stability are
conserved, so long as gvssv and gvddv have reached safe
values when tw has elapsed.

B. Empty Pipeline Detection

Up to this point, we have discussed waking up power gated
circuits, but not the power down sequence. It is of particular
importance to determine whether a pipeline is empty before
power gating it in order to prevent data loss and incorrect
execution.

There are several methods for empty pipeline detection,
which can be loosely classified into one of two categories:
methods that instrument each pipeline stage, or those which
monitor token flow within a pipeline. The former requires
the addition of extra circuitry within each pipeline stage
to detect empty status or computation completion [?]. The
instrumentation overhead grows linearly with the number of
stages, making this method effective only for small pipelines.

Linear-overhead token flow techniques also exist: assuming
a FIFO pipeline, inject a flagged NOP token and block further
token injection. The exit of the flagged token corresponds to
empty pipeline state. However, as with the instrumentation
technique, each stage in the datapath must be altered to accept
a flagged token.

Another token-flow option is to count incoming and outgo-
ing tokens. While this method does not require instrumentation
of individual pipeline stages, it does incur a lg(n) overhead
in area, where n is the number of stages, due to the number
of bits needed to count tokens. It is essential that the token
counting process have a minimal effect on token flow, as
any additional latency in token entrance/exit will decrease the
throughput of the entire system. Furthermore, the latency of
counter operations should be independent of n, especially in
the case of aggressively pipelined systems where n is large.

One solution is to use a pair of rotary counters, one at the
start and end of the pipeline to count incoming and outgoing
tokens respectively. If the counter values match, the pipeline
is empty—i.e. the same number of tokens have entered and
left. However, no assumptions can be made about arrival or
departure times of tokens in an asynchronous pipeline. As a
result, if a token arrives or departs during a counter value
comparison, the result of the comparison will be unstable.

We propose a monolithic counter which is capable of servic-
ing increments (token entrance), decrements (token exit), and
zero-value (empty pipeline) checks in constant time, similar
to the bounded response time counters proposed by [20,21].
Zero checks are performed after servicing an increment or
decrement, resulting in a stable output. The simultaneous ar-
rival of increment and decrement events effectively cancel one
another, so the counter can afford to do nothing, saving power.
The pathological case occurs when the arrival of one or another
event overlaps with the servicing of a prior event, stalling the
new event and token entrance/exit. However, a pipeline oper-
ating at full throughput issues consecutive token entrance/exit
events. Thus, if an event has been stalled, the next time the
counter is available it will see “simultaneous” events—i.e. it
will see simultaneous increments and decrements in steady
state. If throughput remains an issue and additional overhead is
acceptable, interleaving a pair of counters may be appropriate.

Adding an alternating split processes on the increment and
decrement channels allows one counter to observe odd tokens
and the other even tokens.

We implemented this interleaved counter system for empty
pipeline detection in single-input, single-output pipelines.
Each counter is constructed of an array of single-bit counters,
each of which maintains its own value as well as an additional
sticky-zero bit. The sticky-zero bit is true if all of the more
significant counter bits are 0, and false if any of the more
significant bits are 1. If a carry operation occurs during
the update of a particular single-bit counter, it will send an
increment or decrement command to the next higher-order
counter and receive an update to its local sticky-zero bit from
the higher-order counter. Thus, the zero-state of the entire
counter array can be determined in constant time by examining
only the value and sticky zero bit of the least significant
single-bit counter. The evaluation of our design is presented
in section VII.

V. SIMULATION METHODOLOGY

All simulations presented in this paper use the BSIM4
device model, which explicitly accounts for gate, substrate and
reverse biased junction leakage [6]. We evaluate our techniques
using 65 and 90nm commercial technologies running at 25◦C.
Both technologies feature regular-Vt and high-Vt transistors.
Tox in the 90nm technology is 2.1nm and 2.0nm in the 65nm
technology. Based on the spice models, we included additional
wire load in the SPICE netlist for every gate in the circuit.
Based on prior experience on post-layout simulations, our load
wires estimates are conservative and circuit performance is
typically higher in post-layout simulations. Capacitances at the
virtual power rails were calculated as a function of the drain
capacitances and the number of devices attached to them. All
simulations are at the typical-typical (TT) corner.

We applied our power gating techniques to a FIPS-
compliant, 128-bit Advanced Encryption Standard (AES) en-
cryption/decryption engine [22]. We chose to use the AES
engine because of its complexity, wide datapath, and low
duty cycle—encryption engines are usually inactive for long
periods of time. We examine the AES round operation, which
consists of four operations, as seen in Table I. Note that the
BS operation is implemented with the sbox design presented
in [23].

TABLE I
AES ROUND OPERATIONS

Transistor Count
Add Round Key (AK) 8400
Byte Substitute (BS) 84144
Shift Rows (SR) 7567
Mix Column (MC) 30000
Control Circuitry 18000
Total 148111

Our architectural decisions and transistor sizings were cho-
sen to minimize energy and static power. In particular, we
based our sleep transistors sizing on the work presented in

[24]. A detailed discussion of optimal transistor sizing is
beyond the scope of this paper.

VI. POWER GATING EVALUATION

We shall first examine the power savings of applying non-
state-preserving and state-preserving power gating techniques
to each individual AES operation block in isolation. We
chose Cut-Off (CO) and Zig-Zag Cut-Off (ZZCO) as our
non-state holding and state holding power gating techniques,
respectively, as neither requires bias voltages or multiple-well
capabilities. The complexity and tradeoffs of bias voltage
generation made it unattractive to implement. For example,
even though SCCMOS offers better leakage reduction versus
CO, the current draw of the bias generation circuits make
SCCMOS viable for only large circuits. In our 90nm technol-
ogy, a switched capacitor bias generator, based on the baseline
generator from [25], consumes an average of 116µW. As such,
power gating schemes which require on-chip bias generation
with conventional circuits are inappropriate for any ultra-low
power applications with static power in the sub-microwatt
regime.

BS MC SR AK Avg
0

0.2

0.4

0.6

0.8

1
(a) 90nm @ 25

°
C

N
o
rm

a
liz

e
d
 L

e
a
k
a
g
e
 P

o
w

e
r

ZZCO ZZCO−WS CO

BS MC SR AK Avg
0

0.2

0.4

0.6

0.8

1
(b) 65nm @ 25

°
C

N
o
rm

a
liz

e
d
 L

e
a
k
a
g
e
 P

o
w

e
r

Fig. 8. Static power consumption of each AES round operation. Each
operation is power gated in isolation, and results are normalized to a baseline
implementation of no power gating.

As seen in Fig. 8, ZZCO reduces leakage power by an
average of 20%. If we weaken the staticizers (ZZCO-WS)
during idle time as discussed in section III-C, we save an
additional 5%. However, the maximum savings in power come
from using CO power gating, as it offers a 82% reduction
in leakage power on average. The power reductions from
ZZCO and ZZCO-WS are similar in both 65nm and 90nm
technologies; however, CO power gating saves an additional
8% of static power in 65nm versus 90nm.

As for performance, ZZCO has the most pronounced effect
on average operating frequency with a 29% degradation in
90nm and a 28% degradation in 65nm. ZZCO-WS is slightly
better with degradations of 24% and 21% in 90nm and 65nm,
respectively, and CO has the least impact of the three schemes,

averaging a 23% degradation in 90nm and a 20% degradation
in 65nm. Using gvssv and gvddv to drive the gates of the
series transistors instead of GND and VDD weakens the
feedback stack, reducing leakage as well as the opposition to
changing the output node z, which origin of the performance
improvements.

BS MC SR AK Avg
0

0.2

0.4

0.6

0.8

1
(a) 90nm @ 25

°
C

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

ZZCO ZZCO−WS CO

BS MC SR AK Avg
0

0.2

0.4

0.6

0.8

1
(b) 65nm @ 25

°
C

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

Fig. 9. Average operating frequency of each AES round operation. Each
operation is power gated in isolation, and results are normalized to a baseline
implementation of no power gating.

Our examination of the Cut-Off (CO) scheme revealed inter-
esting transient behaviors, as seen in Fig. 10 for a sbox circuit
from our AES engine in idle state, which we commanded
to sleep at t = 100ns. Fig. 10b shows the trace of gvssv,
virtual ground, and Fig. 10a plots supply current. Note that
before sleep is asserted, the power consumption essentially
matches that of an ungated sbox circuit. After sleep is asserted,
the power consumption increases dramatically as gvssv floats
towards VDD.

We attribute this dramatic rise in power consumption to
saturation-mode current in the nMOS stacks. Before gvssv
settles, the nMOS transistors go from cut off to saturation.
This transient behavior can last for longer than 200µs, which
leads us to conclude that CO is not appropriate for circuits that
spend relatively little time in sleep mode—less than 200µs, for
example.

As discussed earlier, the CO power gating scheme destroys
the state of all logic gates, and not just those which have idle
outputs of 0. This is illustrated by the trace of an internal
signal, in.e, in Fig. 10. Before sleep is asserted, all inputs
to the driver of in.e are low, activating the PUN and driving
in.e to VDD. Once sleep is asserted, all nodes tied to gvssv
drift towards VDD. As soon as gvssv > VDD − Vth, the PUN
goes into cut-off and as a result, in.e is no longer driven high.
Therefore, in.e discharges to the value of gvssv. Because of
this effect, all nodes need to be restored to their nominal values
before restarting operation.

From our results it is clear that ZZCO-WS is better than
ZZCO both in static power savings and performance retention.

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

10
3

C
u
rr

e
n
t
(µ

A
)

(a) Supply Current

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
o
lt
a
g
e
 (

V
)

Time (µs)

(b) Virtual Ground and Enable Signal

vssv in.e

Fig. 10. Transient behavior of CO power gating. Note the peak in supply
current immediately after sleep is asserted at t = 100ns.

Since the overheads of ZZCO and ZZCO-WS are the same,
we believe that ZZCO-WS should be the preferred choice
between the two schemes. The choice between ZZCO-WS and
CO is not as clear, however. Performance degradation between
the two is similar, as seen in Fig. 9, but CO offers dramatic
improvements in static power reduction over ZZCO-WS. As
discussed earlier, the transient behavior of the Cut-Off power
gating scheme makes it unattractive for applications where the
duration of a circuit’s idle period is less than several hundred
microseconds. In comparison, the transient behavior of ZZCO-
WS is well-behaved, so it can be used to power gate circuits for
periods in the several hundred nanosecond range. As a result,
ZZCO-WS is suitable for circuits with short sleep periods,
whereas the CO scheme is more appropriate for long-term
sleep applications.

VII. ZDRTO EVALUATION

As discussed in section IV-A, to implement our Zero-Delay
Ripple Turn On (ZDRTO) power gating control scheme, we
must organize our pipeline stages into clusters. Our clusters are
simply the different operations of the AES round computation
described earlier, each of which is a pipelined computation. BS
and SR are transformations on individual bytes, by slicing the
datapath in 8-bit chunks, we could swap their ordering with
no effect on correctness. We swap them now because the BS
operation has a higher transistor count, as seen in Table I, and
thus takes a longer time to wake up. Furthermore, reordering
the BS and SR stages also allows for hardware reuse between
encryption and decryption. The final pipeline stage clustering
is as follows: AK, SR, BS, MC.

TABLE II
INTERLEAVED COUNTER OVERHEAD

Transistor Count Static Power (nW)
Additional Bit 400 19
Constant Overhead 1900 95

To fully implement power gating in a pipeline, we need
empty pipeline detection in the form of our interleaved empty
pipeline detection counter described in section IV-B. The total
depth of our AES round pipeline is 10 half-stages, so we use a
4-bit interleaved counter. The overheads added by the counter
are summarized in Table II for our 90nm process, broken up
by the overhead of adding additional bits and the constant
overhead of the counter arbitration and control circuitry. The
average operating frequency is relatively low—350MHz in
90nm. Given these characteristics, our interleaved counter is
suitable for deep low energy pipelines.

TABLE III
PIPELINE CONFIGURATIONS

AES Round Cluster
No ZDRTO AK SR BS MC
Baseline N/A N/A N/A N/A
CO CO CO CO CO
ZZ ZZ ZZ ZZ ZZ

AES Round Cluster
ZDRTO AK SR BS MC

ZZ-ZDRTO ZZ ZZ ZZ ZZ
Mixed-A N/A ZZ ZZ CO
Mixed-B N/A ZZ CO CO

Legend
N/A No Power Gating
CO Cut-Off Power Gating
ZZ Zig-Zag Cut-Off with Weakened Staticizers

In order to evaluate our ZDRTO scheme, we compare
several different classes of pipeline: a baseline pipeline without
any power gating, power gated pipelines which are controlled
as a monolithic unit, i.e. the entire pipeline is woken up
simultaneously as in synchronous circuits, and power gated
pipelines which are controlled by our ZDRTO scheme. All
of our different combinations of control schemes and power
gating techniques are detailed in Table III.

The first pipeline configuration, Baseline, is a completely
unaltered AES round pipeline without any power gating,
power gating control, or empty pipeline detection circuitry
to which we compare all of our other configurations. We
add our empty pipeline detection counter to all other pipeline
configurations, as all of the other configurations are power
gated. The ZZ and CO configuration consist of the same
AES round pipeline, but with the addition of ZZ-WS and CO
power gating respectively. No ZDRTO control is used for these
configurations. Instead, the entire pipeline is woken up as a
monolithic unit upon the arrival of the first input token, as
would be the case in a synchronous pipeline. Note that the
CO pipeline configuration has isolation circuitry at the start
and end of the entire pipeline. The ZZ-ZDTRO configuration
uses ZZCO-WS, with the addition of the ZDRTO scheme.
Each ZZCO-WS power gated cluster wakes up the next one
in sequence as the first token flows through the pipeline.
We chose not to do a detailed investigation of a CO-ZDRTO
configuration, where all the pipeline clusters are gated using
the CO scheme and wake up is controlled by our ZDRTO

control scheme. Early simulations indicated that the wake up
latency of such a configuration was comparable to that of
the non-ZDRTO-enabled CO configuration, thereby making
the additional overhead of adding per-cluster self reset and
isolation circuits unattractive.

We also investigated two additional ZDRTO-enabled
pipeline configurations, Mixed-A and Mixed-B. These two
pipeline configurations have been optimized in order to mini-
mize the wake up latency. The first cluster, AK, is not power
gated at all so that computation can be started immediately
upon data arrival. In parallel with beginning computation in
the AK cluster, we turn on the next cluster, SR, which is power
gated using our ZZCO-WS scheme. MC is CO power gated,
so waking it up requires the addition of isolation and self reset
circuits between clusters. This is also true of the BS cluster
in the Mixed-B configuration. Note that the only difference
between the Mixed-A and Mixed-B schemes is in which power
gating scheme is applied to the BS cluster, as seen in Table
III. The purpose of this difference is to illustrate the tradeoffs
between power gating with ZZCO-WS and CO deep into the
pipeline. As ZZCO-WS power gated clusters have faster wake
up times than CO power gated clusters, it is desirable to use
ZZCO-WS power gating near the beginning of the pipeline to
improve wake up time and CO power gating near the end to
take advantage the superior power savings of CO.

TABLE IV
ZDRTO RESULTS (90NM)

No ZDRTO Wake Up (ns) Leakage (µW) Freq. (MHz)
Baseline 0.00 7.10 285
CO 32.89 1.50 262
ZZ 5.9 6.34 180

ZDRTO Wake Up (ns) Leakage (µW) Freq. (MHz)
ZZ-ZDRTO 5.6 6.46 182
Mixed-A 18.4 6.05 226
Mixed-B 26.2 1.62 260

However, to retain a competitive advantage in wake up
latency, the wake up sequence of CO power gated clusters
must be started in parallel with upstream pipeline stages. For
example, in Mixed-A, SR wakes up both BS and MC in order
to hide the longer latency of waking up MC, as it is CO power
gated. A similar control scheme applies to Mixed-B, where AK
wakes up BS and SR wakes up MC. The results of our study,
done in a 90nm commercially-available process, are presented
in Table IV. Wake up time is calculated by comparing the full
pipeline propagation latency of the first arriving token in each
pipeline configuration to the propagation latency of the first
token arriving in the baseline configuration.

As expected, the CO pipeline configuration offers the best
in terms of leakage power, but it has the longest wake up
time compared to the other configurations. With the obvious
exception of the baseline configuration, the ZDRTO-enabled
pipeline configurations offer the best wake up times, and
competitive leakage power reductions. ZZ is not as effective
at reducing leakage power but it has shorter wake up times
than CO.

The Mixed-B configuration hides most of the wake up
latency of the CO power gated clusters while reducing leakage
by almost the same amount as the CO configuration. On the
other hand, the Mixed-A configuration does not offer the same
benefits. Using CO power gating only on the MC cluster is
a poor design choice since MC only accounts for roughly
20% of the transistors while having large overhead in isolation
circuitry.

These results indicate the our ZDRTO scheme is appropriate
for use in low-duty cycle, bursty applications where wake
up time is critical. For pipelines where wake up time is
not critical and performance is critical, a choice such as the
CO configuration will save in static power and provide high
performance.

VIII. FUTURE WORK

We would like to implement the various techniques pre-
sented in this paper in the Sensor Network Asynchronous
processor developed at Cornell University [26], especially in
Silicon-on-Insulator (SOI) processes. One necessary step in
our future work is to develop a CAD tool to aid designers in
order to choose the power gating technique that best fits their
application, and to cluster regions appropriately to minimize
leakage power. These tools could also automatically validate
sleep device drive strength based on an analysis of power
supply nets.

IX. CONCLUSION

We present an evaluation of different power gating schemes
in the context of asynchronous circuits. Zig-Zag Cut-Off
(ZZCO) power gating for pseudo-static logic gates offers fast
wake up time, but only reduces static power by 30% on
average. Cut-Off (CO) power-gating offers an average of 80%
power savings, at the cost of increased complexity and the
need for careful timing analysis. We offer an example analysis
and evaluation of power gating applied to an asynchronous
AES encryption/decryption pipeline as well as a generic empty
pipeline detection technique to be incorporated into power
gating control circuitry with minimum area, power, and per-
formance overheads. Finally, we introduce a novel Zero-Delay
Ripple Turn On (ZDRTO) technique to reduce the penalty
of waking up a pipeline from sleep mode. Furthermore, we
present ZDRTO using hybrid power gating schemes in order to
exhibit the trade offs between maximum static power savings
and minimum wake up time.

ACKNOWLEDGEMENTS

The authors would like to thank Derek Lockhart of the
Cornell Computer Systems Laboratory for his contributions
in the design, implementation, and validation of the empty
pipeline detection counter.

The research described in this paper was supported in part
by NSF grants CNS-0834582, CCF-0428427, CCF-0424422,
and in part by Blue Highway. Equipment support was provided
by NSF infrastructure grant CNS-0708788, and the processors
were donated by Intel.

REFERENCES

[1] M. Imai, et al. “Fine-grain leakage power reduction method for m-out-
of-n encoded circuits using multi-threshold-voltage transistors.” IEEE
ASYNC, pp. 209 – 216, 2009.

[2] G. Tellez, et al. “Activity-driven clock design for low power circuits.”
ICCAD, pp. 62 – 65, 1995.

[3] A. Keshavarzi, et al. “Intrinsic leakage in low power deep submicron
cmos ics.” IEEE ITC, pp. 146 – 155, 1997.

[4] K. Roy, et al. “Leakage current mechanisms and leakage reduction
techniques in deep-submicrometer cmos circuits.” Proc. IEEE, 91(2):305
– 327, 2003.

[5] K.-S. Yeo and K. Roy. Low Voltage, Low Power VLSI Subsystems.
McGraw-Hill, Inc., 2005.

[6] K. Cao, et al. “Bsim4 gate leakage model including source-drain
partition.” “IEDM Technical Digest,” pp. 815–818. 2000.

[7] K. Shi and D. Howard. “Sleep transistor design and implementation -
simple concepts yet challenges to be optimum.” IEEE VLSI-DAT, pp. 1
– 4, 2006.

[8] F. Hamzaoglu and M. Stan. “Circuit-level techniques to control gate
leakage for sub-100nm cmos.” ACM ISLPED, 2002.

[9] Y. Shin and H.-O. Kim;. “Cell-based semicustom design of zigzag power
gating circuits.” IEEE ISQED, pp. 527 – 532, 2007.

[10] Y. Thonnart, et al. “Automatic power regulation based on an asyn-
chronous activity detection and its application to anoc node leakage
reduction.” IEEE ASYNC, pp. 48–57, 2008.

[11] T. Lin, et al. “Fine-grained power gating for leakage and short-circuit
power reduction by using asynchronous-logic.” IEEE ISCAS, pp. 3162
– 3165, 2009.

[12] S. Mutoh, et al. “1-v power supply high-speed digital circuit technology
with multithreshold-voltage cmos.” IEEE SSC, 30(8):847 – 854, 1995.

[13] T. Inukai, et al. “Boosted gate mos (bgmos): device/circuit cooperation
scheme to achieve leakage-free giga-scale integration.” IEEE CICC, pp.
409 – 412, 2000.

[14] H. Kawaguchi, et al. “A super cut-off cmos (sccmos) scheme for
0.5-v supply voltage with picoampere stand-by current.” IEEE SSC,
35(10):1498 – 1501, 2000.

[15] T. Kuroda, et al. “A high-speed low-power 0.3 m cmos gate array with
variable threshold voltage (vt) scheme.” IEEE CICC, pp. 53 – 56, 1996.

[16] M. Horiguchi, et al. “Switched-source-impedance cmos circuit for low
standby subthreshold current giga-scale lsi’s.” IEEE VLSIC, pp. 47 –
48, 1993.

[17] K.-S. Min and T. Sakurai. “Zigzag super cut–off cmos (zscc-
mos) scheme with self–saturated virtual power lines for subthreshold–
leakage–suppressed sub–1–v–vddlsi’s.” IEEE ISSCC, pp. 679 – 682,
2002.

[18] S. Kim, et al. “Understanding and minimizing ground bounce during
mode transition of power gating structures.” IEEE ISLPED, pp. 22 –
25, 2003.

[19] A. J. Martin. “Compiling communicating processes into delay-
insensitive VLSI circuits.” Distributed Computing, 1(4):226–234, 1986.

[20] J. Kessels. Calculational Derivation of a Counter with Bounded
Response Time, volume 683/1993. 1993.

[21] J. Ebergen and A. Peeters. “Design and analysis of delay-insensitive
modulo-n counters.” Formal Methods in System Design, 3(3):211–232,
1993.

[22] FIPS. Advanced Encryption Standard (AES), 2001.
[23] J. Wolkerstorfer, et al. “An asic implementation of the aes sboxes.”

“CT-RSA: Cryptographer’s Track at the RSA Conference on Topics in
Cryptology,” pp. 67–78. Springer-Verlag, 2002.

[24] J. Kao, et al. “Transistor sizing issues and tool for multi-threshold cmos
technology.” DAC, pp. 409 – 414, 1997.

[25] H.-J. Song. “A self-off-time detector for reducing standby current of
dram.” IEEE SSC, 32(10):1535–1542, 1997.

[26] C. Kelly, et al. “Snap: a sensor-network asynchronous processor.” IEEE
ASYNC, pp. 24– 33, 2003.

