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Abstract—Asynchronous circuits offer promise in handling
current and future technology scaling challenges. Unfortunately,
their impact has been limited by the lack of design automation.
We present A-NTUPLACE, a timing-driven placer uniquely
suited to handling quasi delay-insensitive circuits. Our tool uses
a generalization of repetitive event rule systems to identify
critical signal transitions. The cell placement engine, based on a
leading academic placer, NTUPlace3, incorporates net weights to
minimize critical wirelengths as well as a novel balancing scheme
to ensure isochronic fork constraints are met. We show that our
placer is effective at both prioritizing selected nets and balancing
forks, demonstrating improvements in 3 of our 4 benchmarks.

Index Terms—Design Automation, Asynchronous Circuits, Op-
timization.

I. INTRODUCTION

As device dimensions decrease, variability increases, as
does device susceptibility to environmental variations, such as
temperature and voltage. The resulting gap between designers’
expectations and the measured performance has resulted in
ever higher margins being included in synchronous designs
just to ensure correct operation.

Quasi delay-insensitive (QDI) circuits offer an elegant so-
lution to this problem. Their self-timed nature allows them to
tolerate arbitrary gate delay, freeing designers from worrying
about incorrect operation due to timing violations. Further-
more, QDI circuits can be optimized for average case perfor-
mance, since the critical paths through asynchronous systems
are defined only by their active pipeline stages [18]. Contrast
this with synchronous systems, where the global clock period
is defined by the slowest pipeline stage, regardless of how
often that stage is executed. QDI circuits are also capable of
achieving an ultra low power envelope; stages that are not
being executed are completely devoid of switching activity,
consuming only leakage power when idle.

Unfortunately, despite of these advantages, QDI circuits
have remained on the fringe of both academic and industrial
design. The oft-stated, and widely accepted, reason for this is
the lack of design automation suited to correctly and efficiently
handle QDI circuits and their particular timing constraints.
Some work has been done to address this shortcoming on all
stages of the design process: from high-level compilation and
synthesis of QDI descriptions to low-level gate mapping and
physical implementation [1,4,9,36]. However, most of these
solutions make some sort of compromise, whether in the gen-
erality of circuit family or design methodology supported, the
efficiency of the implementation, or the overall performance
of the produced circuitry.

In this paper, we focus on the problem of timing driven
placement. Most of the previously published solutions attempt
to fit circuit topologies and timing assumptions unique to asyn-
chronous designs into pre-existing, synchronous tool flows.
While this is useful in that it lets asynchronous designers take
advantage of the decades of development in these tools, it has
many limitations. Most significantly, traditional synchronous
timing analysis requires an acyclic netlist. While this may be
a good match for some asynchronous families, QDI circuits
have many interacting logic loops, which need to be cut to
fit into this paradigm. Picking how to cut these loops can
be challenging, as incorrect cuts may dramatically affect the
accuracy of the timing solution. This challenge is the reason
why many tools limit their application space to template-driven
design, where the cut locations can be statically determined.
However, while template-driven design has allowed for great
productivity increases, it limits designer flexibility, and may
remove some of the advantages of QDI design.

Furthermore, synchronous tools are not aware of certain
assumptions unique to QDI designs, namely the isochronic
fork timing assumption. This assumption relates with signal
transitions that are not acknowledged by all its endpoints. If
such a transition can occur, we must assume this transition
is visible to all forks of the wire within some bounded
time [16]. This type of timing assumption is not present in
synchronous design, and can be easily violated by synchronous
tools unaware of its existence.

In this work, we address these issues by presenting
A-NTUPLACE, a timing aware placer ideally suited to han-
dling QDI circuit topologies and their associated timing con-
straints. Our placer is based on a leading academic placer
NTUPlace3 [3], which generates placement solutions com-
parable to commercial CAD software. Our timing analysis
method, based on repetitive event rule systems, is general and
can be applied to any stable and non-interfering Production
Rule Set (PRS). The timing information is then passed to the
placer in the form of net weights, prioritizing certain nets
over others. To ensure no timing assumptions are violated,
A-NTUPLACE adds explicit constraints to balance isochronic
forks, a unique feature of our placer.

In Section II we discuss previous work related to both
timing analysis for synchronous and asynchronous systems as
well as placers implementing various placement techniques,
Section III details the implementation of A-NTUPLACE,
describing both the timing formulation as well as placement
strategies. In Section IV we evaluate A-NTUPLACE against



several asynchronous circuit benchmarks for which previously
placed and routed solutions exist.

II. RELATED WORK

A. Timing Models and Analysis

1) Synchronous: In clocked circuits, timing analysis has
long been a pressing issue, due to the need to guarantee that
critical paths can meet target cycle time. For the purposes
of timing-driven placement, most of these analyses can be
grouped into two classes: net-based and path-based, depending
on if their results are given as net weights and constraints, or as
path weights and constraints [26]. Though path-based methods
more accurately represent the underlying problem, due to the
possible exponential number of paths, they are typically either
too computationally expensive, or only applied to a subset of
the paths [5].

The timing analysis method with the lowest computational
overhead is doing net-based static timing analysis with the
critical path method [15]. This method uses a topological
sorting of the gates to compute the set of arrival times for
each net from the timing start points, and a set of required
times from the timing end points. The slack of each net is the
difference between the required time and the arrival time, and
if it is positive, indicates that the signal can be delayed without
affecting the overall delay. Due to the use of the topological
sort, the time complexity of this method is linear w.r.t. the
number of gates and wires in a netlist.

2) Asynchronous: Much of the work in characterizing the
timing behavior of asynchronous circuits has either been based
around the framework of a Timed Marked Graphs (TMG), a
class of Petri nets [21], or in Event-Rule (ER) systems, which
have the same expressive power [2]. Using these frameworks,
there exist efficient algorithms to find the period of the system
for high-level performance characterization [2,7]. However,
neither TMGs nor ER systems allow for the expression of
conditionality or data-driven behavior, limiting their applica-
bility. There has been recent effort into extending Petri-net
based analyses to cover conditional circuit behavior [22], but
these methods reason at a higher layer of abstraction than
the gate level. Therefore, placement tools for asynchronous
circuits typically limit their analysis to template based systems,
and use the known properties of these templates to simplify
the analysis process, at the cost of generality [31].

B. Cell Placement

Cell placement can be formulated as a constrained optimiza-
tion problem whose objective is to assign physical positions to
modules within a fixed area such that some metric is optimized
while guaranteeing placement legality (i.e., non-overlapping
modules). The challenge of solving this problem results from
its size; cell placers often must handle designs with up to
millions of cells or more, requiring techniques that can scale
with the design.

Placement strategies that have been developed over the last
30+ years can be broadly categorized into three categories:

1. Stochastic: This method usually involves using the
simulated annealing heuristic: an initial placement is perturbed
with some probability, which is decreasing based on some

annealing schedule. For example, TimberWolf [28] employs
three possible cell perturbations, each with an independent
probability. This technique produces good quality results for
smaller designs, and is flexible enough to easily handle multi-
objective optimization, but tends to be slower and less scalable
than other techniques.

2. Partitioning: This method divides the circuit into smaller
subcircuits, minimizing the number of net connections across
partitions. Typically a min-cut heuristic is recursively applied
to the design until some minimum sized partition threshold
is reached. Module placement is performed by simultaneously
dividing the die area into bins, to which partitions are assigned.
For example, Capo [27] uses a multilevel implementation of
the Fiduccia-Mattheyses algorithm [6] to perform recursive bi-
partitioning. Dragon [34] uses a hybrid technique: The design
and placement area are recursively 4-way partitioned, and
simulated annealing is used to assign design partitions to bins.
Overall, partitioning techniques are quite scalable, and handle
mixed-sized designs well. However, they are limited by the
types of objective functions they can optimize for.

3. Analytical: This method uses a mathematical program-
ming approach, which defines an objective function subject
to constraints, which can then be optimized using analyti-
cal approaches. Placers using this technique can be further
categorized as either quadratic or non-linear, based on the
nature of the objective function. Quadratic placers, such as
Kaftwerk2 [30], Gordian [10], FastPlace [32] and RQL [33],
use a quadratic cost function to model wirelength. Non-linear
placers, such as NTUPlace3 [3] and APlace [8], use non-
linear cost functions to better model net wirelengths. Overall,
analytical placers tend to be more scalable and can handle
multiple objectives and constraints, depending on the problem
formulation. However, certain aspects, such as whitespace
management and module rotation and orientation, are hard to
capture using mathematical programming.

C. Asynchronous CAD

Many placement solutions have also been proposed in the
asynchronous community. Weaver [29] synthesizes a syn-
chronous netlist from a VHDL specification, and then replaces
combinational gates with their QDI equivalents. The design is
mapped to a small library before placement. Proteus [1] uses
a logic clustering approach and a more diverse cell library to
mitigate the area costs of Weaver. However, both approaches
require the final design be implemented with the Pre-Charge
Half Buffer (PCHB) template [13], and both rely on the circuit
library to guarantee timing constraints, such as bounds on
isochronic forks. Recently, Wu et al. [35] used a Lagrangian
relaxation approach to enforce timing constraints on critical
cycles within the Proteus flow.

Approaches using other template styles have also been
explored, such as a psuedo-synchronous approach [31] which
generates Weak-Conditioned Half Buffer (WCHB) template
circuits and employs standard synchronous techniques to char-
acterize cells and generate timing constraints. Loops are cut
at the inputs to certain C-elements to create directed acyclic
graphs (DAGs), allowing for synchronous timing driven place-
ment.



C

C

L.t

L.f

L.e

R.t

R.f

R.e

C

C

Fig. 1: Weak Conditioned Half Buffer

CPlace [11] takes a different approach, unlike all the plac-
ers mentioned above, which are iterative, fixed die placers,
CPlace is a constructive placer, meaning that cells are placed
sequentially. This allows for direct control of wire lengths and
bounds on isochronic forks, but tends to require a much larger
placement area.

III. TIMING DRIVEN PLACEMENT

A. Timing Model

We use Repetitive Event Rule (RER) to reason about per-
formance in asynchronous circuits. RER systems are defined
by:
• E, a set of transitions
• R, a set of rule templates, written as 〈u, i− ε〉 α7→ 〈v, i〉:

– u, v ∈ E are the transitions
– α ∈ [0,+∞) is the delay
– ε ∈ {0, 1} is the occurrence-index offset and
– i is the instantiation index

and commonly represented using a collapsed constraint
graph [2]. For the sake of circuit analysis, these graphs are
restricted to only finite, strongly connected graphs, where
cutting the edges with ε = 1 (also known as marked edges, or
back edges) cuts all cycles in the graph.

Intuitively, each transition represents either a low-to-high
transition (e.g., a↑), or a high-to-low transition (e.g. a↓), and
each of the rules represents causality between these transitions.
When a transition has more than one incoming rule, it waits
for all of the rules to be ready before firing. If a rule has ε = 1,
this corresponds to an connection between one “iteration” and
the next, allowing a finite RER to represent infinitely-executing
sequences of transitions.

RER systems can be constructed from circuits using an
algorithm known as index-priority simulation, which typically
runs in linear time, though may exhibit worst-case exponential
time in aberrant systems [12]. To reason about sub-systems
separately, and thereby cut down on the run time, RER can
be constructed as Partitioned RER (PRER) [14], which distin-
guish the circuit and its environment, shown in the collapsed
constraint graph as boxes around these external transitions.

As an example, consider the WCHB shown in Figure 1 [13].
If we augment this with an environment that is always sending
a true token on the L channel, and always receiving on the
R channel, we can generate the PRER shown in Figure 2a,
where delays have been elided for the sake of compactness,
and edges with ε = 1 are decorated with black dots. Though
this RER is useful for performance analysis, it is insufficient
for doing placement, as the resulting graph does not cover
every transition, only those that result from the true token.

While it is possible to repeatedly run this analysis for all
possible inputs, this would quickly become intractable for
larger systems.

As an alternate method to fill in these gaps, consider the
gate connectivity graph of the WCHB, as shown in Figure 2b.
The RER, which represents causality, is necessarily a sub-
graph of this graph, as in QDI circuits there is no causality
except that which comes from direct dependencies. However,
this connectivity graph lacks two features of RERs which
are needed for analysis: first, it lacks the environment that
would complete the graph, and second, it lacks the marked
edges which connect one iteration to the next. Using what we
know about the dual-rail datatype used in the WCHB, we can
generalize the PRER over the connectivity graph, to create the
approximation of the PRER seen in Figure 2c. As the original
RER is a subgraph of this graph, any critical cycle that exists
in the original graph must exist in the new approximation, and
so this will only ever overestimate cycle time.

If this information about data symmetry is not available, or
if index-priority simulation is too computationally expensive,
marked edges can also be placed on the connectivity graph
using depth-first search (DFS) to find back edges. As an
example of this, see Figure 2d, where a DFS initiated from
R.e↑ (indicated as a dashed blue line) discovers L.t↑ 7→ rto↓
as a back edge and marks it. While this procedure does
guarantee that if these edges are cut, all cycles in the graph
will be cut, it does not guarantee that the placement of the
marked edges has any meaning.

Through testing, we found the best results were obtained
by generalizing from the data whenever such symmetry was
available, using DFS to detect cycles in the graph that are
not cut by the marked rule, and then removing the last rule
in this cycle. This allows us to generalize over data values
whose treatment is symmetric, but not generalize over data
where the treatment of different values was asymmetric (e.g.,
control values). While this method does require multiple runs
to get complete coverage, this coverage is easily measurable,
and the number of required runs is typically small.

Once this model is generalized, it can be used for STA,
but the methods we use are not quite the same in traditional
clocked STA. Similarly, we cut all of the marked edges
(analogous to the flip-flop inputs/outputs from the synchronous
world) to get a DAG, which we topologically sort. However,
unlike in clocked systems, where all of the events at the “top”
of this DAG are activated at the same time (the beginning of
the clock cycle), and all events at the “bottom” commit at
the same time (end of the clock cycle), asynchronous circuits
do not have such alignments. Additionally, it is incorrect
to approximate the system in this way, as the schedule of
marked events can drastically affect the time separation of
later events [20].

Instead, we take advantage of the fact that there exist
efficient algorithms to identify average cycle time of these
graphs and, from that, find the critical cycles of the graph [2].
For each of the critical rules that is also a marked rule, we
can run the event-initiated timing simulation [24], defined for
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initiating event g as:

tg(f) =

{
0 if f = g or f 6≺ g
max{tg(e) + τ |g � e ∧ e τ7→ f} otherwise

where f ≺ g means that event f precedes event g in the
RER unrolling. Intuitively, this is the schedule for an event
given that a particular critical rule dominates its execution
time. Given the topological sort of the RER after cutting the
marked edges, we can determine one “unrolling” of the event-
initiated timing simulation in linear time.

For an individual event-initiated timing simulation, we can
compute the required time for each event by taking the reverse
topological sort, and determining the latest possible time that
this event can be scheduled while maintaining the required
time of its successors. Then, we compute the slack of a
particular rule by subtracting the scheduled time from the
required time, giving the amount of delay that can be added to
this rule without affecting system performance. This procedure
is repeated for every critical marked edge, looking for the
minimum slack for each rule, to ensure that the slack used for
placement is conservative.

We incorporate net criticality information from this timing
simulation into our placer by generating net weights from the
computed slack of each net. Since this type of simulation
is data dependent, we perform multiple simulations in order
to ensure maximal coverage of transitions. Net slacks are
computed by averaging the worst case slacks across multiple
timing simulations. Net weights are computed using (1)
from [17]

we =

(
1− slacke

T

)α
(1)

where slacke is the computed slack for net e, T is the maxi-
mum slack across all nets in the design, and α is the criticality

exponent, typically set to 2. A detailed description on how we
fit net weights into our placer is found in Section III-B.

B. Analytical Placement
A-NTUPLACE inherits many features from NTUPlace3 [3].

It can be classified as a fixed-die, multi-level analytical placer.
Its objective is to minimize the total wirelength of the design
under given density constraints. This can be formally written
as (2).

min W (x, y)
s.t. Db(x, y) ≤Mb

(2)

where W (x, y) is the wire length function, typically repre-
sented using half perimeter wire length (HPWL), as defined
in (3), Db(x, y) is the density function for a particular bin
b, and Mb is the target density for that bin. This formulation
assumes the netlist is represented as a hypergraph, with each
net represented as a hyperedge e.

HPWL(x, y) =
∑
e∈E

( max
vi,vj∈e

|xi − xj |+ max
vi,vj∈e

|yi − yj |) (3)

Like NTUPlace3, our placer solves the above constrained
minimization problem by using the penalty method; The orig-
inal objective function (2) is transformed into the following:

min W (x, y) + λ
∑
b

(Db(x, y)−Mb)
2 (4)

where the density constraint is converted into a penalty term
scaled by λ. As is, (4) cannot be solved by analytical
techniques because neither the wirelength function W (x, y)
nor the density penalty Db(x, y) are smooth and differentiable.
Instead, an approximation for (4) is used, where the wirelength
is represented as the Log-Sum-Exp (LSE) function described
by Naylor [23], and the bin density is computed using a



bell-shaped curve as in APlace [8]. This yields an objective
function that is smooth and differentiable, lending itself to
standard analytical techniques, such as the conjugate gradient
method.

We begin by first adding support for our timing model
described in section Section III-A. The NTUPlace3 placer
treats all nets equally, with the aim of minimizing the total
wirelength across all nets. However, nets deemed more critical
by our timing model must be given a higher priority, possibly
at the expense of other, less critical nets. To achieve this,
A-NTUPLACE annotates each net with a weight; a larger
weight indicates a more critical net. The net weights are
computed using (1), which use the slacks generated by the
timing simulation as described in Section III-A. Altering net
criticality affects multiple aspects of the placement algorithm:

• The clustering stage is used to reduce the number of
movable blocks in the design by grouping modules with
high affinity, thus allowing the placer to scale to very large
designs. By changing the weight of a given net, we change
the affinity between two modules connected by that net,
and thus, change the likelihood they would be grouped into
a cluster. Modules that are clustered together tend to be
placed close to one another in subsequent declustering and
placement iterations.

• The analytical solver operates on the LSE wirelength ap-
proximation, whether the LSE is for the movable modules
specified in the design, or groups of modules formed during
clustering. Thus, for our placer to respect net criticality,
weights must be included in the LSE formulation:

γ
∑
e∈E

we

(
ln
∑
vk∈e

exp(
xk
γ
) + ln

∑
vk∈e

exp(
−xk
γ

)

+ ln
∑
vk∈e

exp(
yk
γ
) + ln

∑
vk∈e

exp(
−yk
γ

)

) (5)

where we is the weight assigned to net e, xk, yk are the
x and y coordinates of module vk, and γ is a smoothing
factor. The LSE approximation for the HPWL is convex,
which is not affected by the scaling term we. Note that as
γ approaches 0, the LSE approaches the HPWL in (3).

• The detailed placer uses a sliding window to locally op-
timize cell positions within that window. For each window
position, a cost matrix representing the change in wirelength
resulting from moving a cell to a new position, or swapping
two similarly sized cells, is built. A bipartite matching
problem is formulated based on moving cells to these
new potential positions. Net weights are used to adjust the
cost matrix, putting greater emphasis on shortening higher-
priority nets.

We further augment A-NTUPLACE with constraints on wire
forks to ensure that all isochronic fork assumptions are met.
This is accomplished using two methods. First, in the global
placement stage, the objective function described in (4) is
augmented with an additional penalty term which penalizes
nets for having excessively large differences in distances from

net driver to destinations. The new objective function becomes:

min Ŵ (x, y)+λ
∑
b

(Db(x, y)−Mb)
2

+µ
∑
e∈EI

max
n∈FO(e)

(dn − dlim,e, 0)2
(6)

where dn is the Euclidean distance from driver module to
fanout module n, dlim,e is the maximum allowed distance
from net driver to a fanout module for net e, µ is a scaling
term similar to λ, and EI is the subset of nets marked as
potentially isochronic. The set EI is conservatively defined as
containing all nets that have exactly one driver and has fanout
of greater than one.

Second, in the detail placement stage, the cost matrix is fur-
ther modified to incorporate penalties for any cell movements
that could potentially violate the isochronic fork assumption.
For every module in the current window, a penalty is computed
for every net connected to that module that has been flagged
as potentially isochronic. The value of this penalty depends
on whether the current module is the net driver or is in the
fanout set of that net. If module n is in the fanout set, then
the penalty of violating the isochronic assumption is

Pn,e = (dn − dlim,e)2 (7)

which is the same as in (6). If the module is driving the net,
then it receives a penalty from all the other modules connected
to it:

Pm,e =
HPWLFO(e)

HPWL

∑
n∈FO(e)

(dn − dlim,e)2 (8)

where Pm,e is the value of penalty applied to module m
from net e, n represents all the modules connected to net e
(excluding module m). The factor HPWLFO(e)

HPWL , the ratio of
the HPWL of only the fanout modules to the total HPWL of
the net, is used to scale the penalty based on how tightly the
fanout modules are placed; if they are placed close together,
then moving the net driver should not make a big difference
in terms of the isochronic timing assumption.

IV. EVALUATION

We evaluate our placer on several benchmarks from a
fully-implemented and silicon-verified ultra low-power asyn-
chronous sensor network processor [25]. These designs en-
compass a wide variety of logic and implementation styles.
Each benchmark was completely specified using sequential
CHP, it was then compiled down to a PRS following Mar-
tin’s synthesis procedure [19]. The PRS is then converted
into a cell library using cellTK [9], a cell generation tool
capable of creating physical layout for cells with arbitrary,
non-static logic topologies, a frequent occurrence in QDI
designs. A-NTUPLACE then uses these cells to assemble the
benchmarks. The evaluated benchmarks are listed in Table I.

A. Timing Model
As our timing model is based on the circuit structure,

instead of the RER itself, and because we are simultaneously
reasoning about all possible data values, we are only approxi-
mating the timing solution. To determine the accuracy of this



TABLE I: Evaluated Benchmarks

Unique Total Total Baseline
Benchmark cells cells Nets HPWL

Logic 13 103 178 8437
Shift 51 1065 1132 66712

Decode 56 282 329 26048
Fetch 100 571 636 39975

approximation, we can compare it to the brute force method of
looking at all possible RER solutions for each benchmark. As
the number of possible RER systems is exponential w.r.t. the
size of the inputs, we limit our comparison to a random sub-
sampling of 10,000 brute force instances for each benchmark.
Table II presents four comparisons for our benchmarks:
• Cycle time error relative to median brute force cycle time
• Fraction of transitions identified by the approximation as

critical that are never critical in the brute-force evaluation
• Fraction of transitions identified as non-critical that are

ever critical in the brute-force evaluation
• Root-mean-squared-deviation (RMSD) of the slack.
In all cases, there were typically few false positives, only a

small number of false negatives, and the approximated slack
was very close to the slack computed using the brute force
methods. The cycle time was also typically close, however,
there was significant deviation in the Shift unit. This stems
from the highly variable cycle time of the Shift unit, as the
static approximation can only have a single cycle time, but
several different cycle times were seen during the brute-force
exploration. Nevertheless, this does not substantially affect the
accuracy of the slacks, as they are independent of the cycle
time, and only dependent on interactions of local delays.

TABLE II: Timing Model Evaluation

Cycle Time False Pos False Neg. RMSD
Benchmark Error Critical Critical Slack

Logic 0.00% 0.00% 8.33% 1.20%
Shift 67.62% 0.00% 1.60% 0.90%

Decode 0.07% 17.76% 4.63% 7.30%
Fetch 8.60% 3.43% 3.45% 3.30%

B. Placement
We evaluate A-NTUPLACE by first comparing it to a

state-of-the-art baseline commercial standard cell placer. As
mentioned above, we first convert our PRS into a standard cell
library using cellTK, where roughly every pair of Production
Rules (PRs) driving a node in the PRS corresponds to one
cell in the library. The designs are placed by our baseline
commercial placer with fairly aggressive density targets, all
greater than 90%. Note that no timing information is passed
to our baseline placer, as cellTK does not characterize the cells
it generates. Once placed, the commercial placer’s core area
and pin locations are used to initialize A-NTUPLACE in order
to ensure a fair comparison. The execution times of our placer
are not evaluated, but are observed to be comparable to the
unmodified NTUPlace3 for our four benchmarks.

We first evaluate how well our placer performs on asyn-
chronous netlists with uniform net weights and no fork bal-
ancing (ie, default settings). Specifically, we look at vari-
ous features of the placer that could introduce unexpected

and unpredictable behavior, such as the huersitic techniques
employed by look-ahead legalization (LAL) during global
placement and local search during detailed placement. The
results are shown in Table III. All data is with respect to the
baseline HPWL. For every configuration, the final placement
is legal with all density constraints met.

TABLE III: HPWL Results

Benchmark Baseline No LAL With LAL With Detail
Logic 8437 1.30% −0.03% −10.10%
Shift 66712 7.80% 2.40% −3.80%

Decode 26048 −15.80% −17.80% −21.50%
Fetch 39975 7.7% 2.2% −5.50%

As can be seen, all of the benchmarks benefit from per-
forming LAL during the global placement stage, and also
from running the detailed placer stage after legalization. This
conforms with previously published results for other placers
on synchronous benchmarks

Figure 3 shows how each net is benefited by the net weights
generated by our index-priority simulation on the RER. Here,
each net is represented by a point in the scatter plot. The
darker the shade of red, the more critical the net, and thus, the
higher the weight. The X-axis and Y-axis represent the HPWL
of the baseline placer and A-NTUPLACE with wire weights,
respectively. The coordinates of each point are scaled by the
net weight. A reference line y = x is added; points below that
line indicate an improvement in HPWL for that net.

As can be seen in Figure 3, many of the nets in the design
are in fact critical. This is not uncommon for balanced, slack
matched QDI circuits, since the same phenomenon occurs in
well-balanced synchronous circuits as well. This observation is
confirmed by our brute force evaluation of the RERs for each
benchmark. Benchmarks with many critical nets, such as the
shift and fetch units, have many nets with the same weight, and
thus, does not differentiate much from the baseline, resulting
in points close to the reference line. However, the logic and
decode units have greater variety in their net wet weights,
allowing for a greater differentiation in resulting wirelengths.
Indeed, many of the points representing critical nets are below
the reference line, indicating an improvement in HPWL for
those nets.

C. Fork Balancing

As discussed in Section III-B, two different methods for bal-
ancing isochronic forks are implemented in A-NTUPLACE:
one is a modification to the objective function in the global
placement stage, and the other is augmenting the cost matrix
in the detailed placement stage. We evaluate the effectiveness
of both methods separately. Table IV shows the number of nets
that were improved (balanced) as a result of solely the global
placement stage and the global stage in conjunction with the
detailed stage.

As can be seen, our global method improves fork balancing
for more than half of nets in three of the four benchmarks
compared to the commercial baseline. Running the detailed
stage afterwards further improves overall fork balancing in
those three benchmarks. However, in the fetch unit, the number
of forks improved decreases after detailed placement. This is
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Fig. 3: Benchmarks evaluated on A-NTUPLACE with net weights derived from the timing model and no fork balancing.

TABLE IV: Balanced Isochronic Forks

Total Improved
Benchmark Forks Global Detailed

Logic 71 52% 62%
Shift 174 70% 76%

Decode 54 65% 76%
Fetch 184 46% 42%

likely caused by an interleaved placement of modules from two
distinct but tightly coupled components within the benchmark,
which makes it difficult for the detailed placer to improve on
HPWL and balance forks. To fully understand the impact of
this improvement, we plot the magnitude of the imbalances in
wire forks. In Figure 4, each point represents a net e within
the potentially-isochoric fork set EI . The X-axis and Y-axis
represent the difference in distances between the modules
closest to and furthest from the net driver for the baseline
and the evaluated scheme, respectively. Red circles indicate
a net with large baseline HPWL, and blue circles indicate a
small baseline HPWL. A reference line y = x is added; points
below the reference line indicate an improvement, i.e., a more
balanced fork.

As can be seen, all benchmarks have many blue points
clustered around the origin. This indicates that many of the
nets in set EI are relatively short, and the penalty function
does not have a large effect on them. Since they are so short,
the imbalances in these nets are unlikely to manifest as timing
errors. However, nets represented by dark red points are longer
more likely to violate the isochronic fork assumption if not
well balanced. Fortunately, the A-NTUPLACE does well at
balancing these forks and improving over the baseline, as most
of these red points fall below the reference line.

Finally, we evaluate how well our timing driven placement
strategy works in conjunction with our fork balancing scheme.
Our benchmarks are run through A-NTUPLACE using the net
weights derived from the timing model. We also enable fork
balancing in both the global and detailed placement stages.
The results are shown in Figure 5.

As can be seen, adding fork bounding constraints to the
placement does have a small effect on the overall distribution
of net HPWL. Compared to Figure 3, the points trend slightly
upwards, above the reference line. This indicates that the
forces minimizing the wirelength and balancing wire forks are
in opposition. This is expected, since, as in (6), fork imbalances
add a penalty to the function being minimized. However, we
observe that there is no significant difference in terms of fork

balancing with net weights compared to without net weight, as
in Figure 4. This indicates that fork balancing is less sensitive
to varying net weights. This too is expected, since the fork
balancing penalty formulation in (6) only takes distances into
account, not the net weights.

V. CONCLUSION

We presented A-NTUPLACE, a timing-driven placement
tool designed specifically to handle quasi delay-insensitive
asynchronous circuits. Our timing engine, based on repetitive
event rule systems, is general and can identify critical timing
paths through any stable and non-interfering production rule
set. Our cell placer is capable of prioritizing those nets deemed
critical by our timing model, and is uniquely formulated
to handle the isochronic fork timing assumption. Our main
contributions are being able to balance wire forks while still
respecting net criticality as derived by our timing model. Our
results indicate that our placer can improve fork imbalances in
our benchmarks by an average of 64% compared to a baseline
commercial place & route tool.
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Fig. 4: Benchmarks evaluated on A-NTUPLACE with unit net weights and fork balancing with both global and detail stages.
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