This is an old revision of the document!
General technology configuration
General technology configuration information is stored in global.conf
. This file contains information that doesn't depend on most of the details of the technology provided by the foundry. The only item here that could be viewed as technology-specific corresponds to the transistor flavors supported (i.e. different thresholds, I/O transistors, etc). We normally use a fixed set of names for these transistor flavors in the ACT file, independent of technology. The standard flavors we tend to use are:
svt
: standard threshold voltage, the default transistor flavorlvt
: low threshold voltagehvt
: high threshold voltage
Other common names are:
od25
: I/O device for 2.5Vod18
: I/O device for 1.8V
Generic configuration settings
These settings have to do with various options that can impact ACT circuit construction and output generation.
Circuit construction complexity
begin act int max_recurse_depth 1000 int max_loop_iterations 1000 end
These two parameters control the expansion/elaboration phase of ACT. ACT language constructs include while loops, as well as recursive circuit constructions. To ensure that the ACT expansion phase will always terminate (albeit with an error), these two parameters control the maximum depth of recursive expansions as well as the maximum number of iterations of a while loop.
begin act int subconnection_limit 16384 end
This specifies a limit on array sizes that also have internal sub-connections (i.e. arrays that are not just simple memories, for example). The limit should be increased as needed, but can have a performance impact if you have a very large array with internal sub-connections.
Warnings
The following warnings can be turned on/off using an ACT configuration setting. They can also be adjusted via the standard act command-line options. These are integer ACT configuration variables that should be set to either zero (turn off warning) or one (turn on warning).
act.warn.empty_select
: warn if all the guards in a selection statement in ACT (the core language, not the CHP/HSE sub-language) are false.act.warn.double_expand
: warn if an ACT tool attempts to expand an already expanded ACT object.act.warn.no_local_driver
: warn if a local variable doesn't have a driver if detected during some of the ACT analysis passes.act.warn.dup_pass
: warn if an ACT tool registers a duplicate pass.act.warn.lang_subst
: warn if an ACT tool uses a different language body within a process than the default choice.
Output generation and name mangling
begin act string mangle_chars ".:()<>[],{}"" end
Sometimes it is useful to export files from the ACT format to other formats to interact with external tools. Examples of such formats include Verilog and SPICE. Since these are different languages, they use different syntax for identifiers. (Different commercial SPICE simulators use different identifier syntax too.) ACT identifiers and names include characters including [
, ]
, .
, <
, >
(among others). The ACT library provides a generic name mangling feature that can be used to convert them into identifiers that only use alphanumeric characters (i.e. basic C-style identifiers). The mangle_chars
string specifies which characters should be mangled. Up to 36 characters can be mangled. By default, the _
character is used to mangle characters.
begin act string mangle_letter "_" end
If the mangle character needs to be changed, then a different character can be set by modifying the mangle_letter
setting. To learn more, take a look at some examples.
begin act int output_window_width 72 end
For tools that use pretty-printing, this sets the output window width for a line break.
Devices
In most technologies, circuits can be implemented with devices of different types. In CMOS, n-type and p-type transistors come in a number of flavors. Common flavors include standard threshold voltage, low threshold voltage, and high threshold voltage for core circuits. Special transistors can also exist that support higher voltages (typically used for I/O devices). Instead of building in these concepts into the library implementation, ACT permits flavor annotations in the circuit description. For example, an inverter with a low threshold voltage transistor implementation would be:
prs { in <10,lvt> -> out- ~in <20,lvt> -> out+ }
Here lvt
is the transistor flavor. The list of valid flavors are specified in the ACT library:
begin act string_table dev_flavors "svt" "lvt" "hvt" end
The first flavor in the list (svt
in the example) is the default value if the flavor is unspecified. This means that
prs { in <10,lvt> -> out- ~in <20> -> out+ }
would use lvt
for the in
input to the pull-down network, but svt
for the other devices needed.
ACT also has support for generic two-terminal devices. The standard configuration option uses this to support capacitors.
begin act string_table prs_device "cap" end
This permits you to write:
The first flavor in the list (svt
in the example) is the default value if the flavor is unspecified. This means that
prs { cap (in,GND) cap<5,2> (out,GND) }
These are capacitors, the first one being a unit capacitor while the second is 10 units (5 x 2) in size.
Specification directives
The spec
language body can contain a list of directives associated with Booleans. The list of these directives is contained in the ACT configuration file:
begin act string_table spec_types "exclhi" "excllo" "mk_exclhi" "mk_excllo" end
These directives can be added as new tools that developed that might want additional information from the design. An example of using a directive is shown below:
bool a, b; bool x[10]; spec { exclhi(a,b) excllo(x) // this is excllo(x[0],x[1],...,x[9]) }