Welcome and Recap of Models

Rajit Manohar

Asynchronous VLSI and Architecture (AVLSI) Group Computer Systems Lab, Yale University

https://csl.yale.edu/~rajit/
https://avlsi.csl.yale.edu/act

Yale

Abstractions for behavioral level modeling

- Message-passing programming in CHP
 - Parallel collection of sequential programs
 - Communication channels for information exchange
- Dataflow graphs
 - Fine-grained parallel components
 - Can be viewed as "simple subset of CHP"
 - Easy to think about pipelines
 - Communication channels for information exchange
- Links and joints

- Separation of state and actions
- Information exchanged via links
 - Abstraction that captures common features of different ways to implement communication between two components

Gate-level modeling

Digital logic

le

- All variables must be mapped into Booleans (0/1)
 - If we already have a Boolean variable, direct mapping
 - N-bit integers : use N one-bit variables
- Circuit often includes signal + complement
 - Sometimes made *explicit* by having two variables for a Boolean
- Gates manipulate Boolean values

Syntax for gates in ACT

Yale

AVLSI

Going from channels to signals/Booleans

- Two parts of a channel
 - Synchronization [blocking send and receive]
 - Data transfer from sender to receiver
- Basic idea

ale

- Two signals : request and acknowledge
 - One end asserts request
 - Other end asserts acknowledge
- * It is possible to have one signal
 - One end asserts the signal
 - The other end de-asserts the signal
- · Many variations of this idea in the literature
 - We will describe some popular approaches today

