Welcome and Recap of Models

Rajit Manohar

Asynchronous VLSI and Architecture (AVLSI) Group
Computer Systems Lab, Yale University

https://csl.yale.edu/~rajit/
https://avlsis.cs1.yale.edu/act
Abstractions for behavioral level modeling

• Message-passing programming in CHP
 ❖ Parallel collection of sequential programs
 ❖ Communication channels for information exchange

• Dataflow graphs
 ❖ Fine-grained parallel components
 ‣ Can be viewed as “simple subset of CHP”
 ❖ Easy to think about pipelines
 ❖ Communication channels for information exchange

• Links and joints
 ❖ Separation of state and actions
 ❖ Information exchanged via links
 ‣ Abstraction that captures common features of different ways to implement communication between two components
Gate-level modeling

• Digital logic
 ❖ All variables must be mapped into Booleans (0/1)
 ‣ If we already have a Boolean variable, direct mapping
 ‣ N-bit integers: use N one-bit variables
 ❖ Circuit often includes signal + complement
 ‣ Sometimes made explicit by having two variables for a Boolean

• Gates manipulate Boolean values

\[
\begin{align*}
 a & \land b | c & \rightarrow & x + \\
 \text{condition (guard)} & & \text{assignment}
\end{align*}
\]

production rule
Syntax for gates in ACT

Combinational Gates

- **a** \(\rightarrow\) **x**
 - \(\sim a\) \(\rightarrow\) **x**
 - \(a \rightarrow x\)

- **a** \& **b** \(\rightarrow\) **x**
 - \(\sim a\ |\ \sim b\) \(\rightarrow\) **x**
 - \(a \& b \rightarrow x\)

- **a** | **b** \(\rightarrow\) **x**
 - \(\sim a\ &\ \sim b\) \(\rightarrow\) **x**
 - \(a \ |\ b \rightarrow x\)

State-Holding Gates

- **a** \(\rightarrow\) **c** \(\rightarrow\) **x**
 - \(\sim a\ &\ \sim b\) \(\rightarrow\) **x**
 - \(a \& b \rightarrow x\)

- **a** \(\rightarrow\) **x**
 - \(\sim a\) \(\rightarrow\) **x**
 - \(a \rightarrow x\)

Short Cuts

- **a** \(\rightarrow\) **x**
 - \(a \rightarrow x\)

- **a** \& **b** \(\rightarrow\) **x**
 - \(a \& b \rightarrow x\)

- **a** \& **b** \(\rightarrow\) **x**
 - \(a \& b \rightarrow x\)

- **a** \& **b** \(\rightarrow\) **x**
 - \(a \& b \rightarrow x\)

- **a** \& **b** \(\rightarrow\) **x**
 - \(a \& b \rightarrow x\)
Going from channels to signals/Booleans

• Two parts of a channel
 ❖ Synchronization [blocking send and receive]
 ❖ Data transfer from sender to receiver

• Basic idea
 ❖ Two signals: request and acknowledge
 ‣ One end asserts request
 ‣ Other end asserts acknowledge
 ❖ It is possible to have one signal
 ‣ One end asserts the signal
 ‣ The other end de-asserts the signal

• Many variations of this idea in the literature
 ❖ We will describe some popular approaches today