
Asynchronous Dataflow:
MOUSETRAP Pipelines

Montek Singh
UNC Chapel Hill

ASYNC 2022 Summer School
Week 2: June 13

2

MOUSETRAP Pipelines
[Singh/Nowick, ICCD 2001 & TVLSI 2007

Simple asynchronous implementation style, uses…
l transparent D-latches + standard combinational function logic
l simple control: 1 gate/pipeline stage

Uses a “capture protocol”: Latches are …
l normally transparent while waiting for data
l become opaque after data arrives

Control Signaling: transition-signaling = 2-phase

Goals:
l fast cycle time
l simple inter-stage communication
l standard cell implementation

3

reqN

ackN-1

reqN+1

ackN

Data Latch

Latch Controller

doneN

Data in Data out

Stage NStage N-1 Stage N+1

En

MOUSETRAP: A Basic FIFO
Stages communicate using transition-signaling:

1 transition
per data item

1st data item flowing through the pipeline2nd data item flowing through the pipeline

4

MOUSETRAP: A Basic FIFO (contd.)
Latch controller (XNOR) acts as “phase converter”:

l 2 distinct transitions (up or down) è pulsed latch enable

2 transitions per
latch cycle

reqN

ackN-1

reqN+1

ackN

Data Latch

Latch Controller

doneN

Data in Data out

Stage NStage N-1 Stage N+1

En

Latch is re-enabled when next stage is “done”Latch is disabled when current stage is “done”

5

MOUSETRAP: FIFO Cycle Time

XNORLATCH TT +×2Cycle Time =

reqN

ackN-1

reqN+1

ackN

Data Latch

Latch Controller

doneN

Data in Data out

Stage NStage N-1 Stage N+1

En

Fast self-loop:
N disables itself

2

N computes

1

N+1 computes

2

3

N re-enabled
to compute

6

Stage N+1

logic

delay

Stage N

Data Latch

Latch Controller

doneN

logic

delay

Stage N-1

logic

delay
reqN

ackN-1

reqN+1

ackN

MOUSETRAP: Pipeline With Logic

“Bundled Data” Requirement:
l each “req” must arrive after data inputs valid and stable

Simple Extension to FIFO:
insert logic block + matching delay in each stage

Fork
ã A fork stage has two

(or more) successors
l same data and req sent

to all
l wait for ack from all

7

req

Fork Stage

C

ack2

ack1

Fork

8

req

Fork Stage

C

ack2

ack1

In Ben’s talk: COPY, n-way link

In

COPY

Out0 Outn-1

...

*[In?x; Out0!x, …, Outn-1!x]

Join
ã A join stage has two (or

more) predecessors
l wait for data from all
l same ack sent to all

9

req

Join Stage

req2

req1
ack

C

Join

10

req

Join Stage

req2

req1
ack

C

In Ben’s talk: FUNCTION, OPERATOR

In0

FUNCTION

Inn-1

Out

...

*[In0?arg0, In1?arg1, … , Inn-1?argn-1;
Out!func(arg0,arg1,…,argn-1)

]

Arbitration Stage
ã Two input channels,

two output channels
ã Only one input read

l whichever arrives first
l … goes out on the

corresponding output

ã Seitz’ Mutex is the core
l [from Brunvand’s thesis]
l surrounding logic adapts

it to transition signals

11

Merge without (or after) Arbitration
ã A merge stage has two

(or more) predecessors
l data is taken from

whichever input channel
has a new request

ã Assumption:
l no arbitration needed
l input channels are

mutually exclusive

12

L
req

Merge w/o
arbitration

req2
req1

ack

L

L

ack1
ack2

Merge without (or after) Arbitration
ã Datapath

l mux controlled by
change detectors on
input channels

13

L
reqreq2

req1

ack

L

L

ack1
ack2

req2

req1

data1

data2

data

In0 In1

Out

*[[#In0 -> In0?x
[] #In1 -> In1?x
];
Out!x

]

In Ben’s talk: MERGE, MIXER

Conditional Select (or event mux)
ã Two data inputs

and one select
l first read select
l then:

Øbased on select,
read one of the
inputs

Ødo not read the
other input

l datapath
Ømux + latch

14

Conditional Select (or event mux)

15In Ben’s talk: MUX, CONTROLLED MERGE

C0 1
MUX

In0 In1

Out

*[C?c;
[c=0 -> In0?x
[] c=1 -> In1?x
];

Out!x
]

Conditional Split (or router)
ã One data input

and one select
l first read data +

select
l then:

Øbased on select,
send data along
one output
channel

16In Ben’s talk: DEMUX, SPLIT

Conditional Split (or router)

17In Ben’s talk: DEMUX, SPLIT

Out0

DEMUX
0 1

In

Out1

C

*[In?x, C?c;
[c=0 -> Out0!x
[] c=1 -> Out1!x
]

]

18

Timing Analysis
Setup constraint: matched delay
Hold Time constraint:

Data must be safely “captured” by Stage N
before new inputs arrive from Stage N-1

l Stage N’s “self-loop” faster than entire path through previous
stage

Stage N

Data Latch

Latch Controller

doneN

logic

delay

Stage N-1

logic

delay
reqN

ackN-1

reqN+1

ackN

Example: Greatest Common Divider

19

Euclid’s GCD algorithm
gcd(a, b)

while (b != 0)
if(a>b)

a = a – b
else

b = b – a
return a

ã Example
l gcd(42, 28)
l (14, 28)
l (14, 14)
l (14, 0)
l è 14

20

Euclid’s GCD algorithm
gcd(a, b)

while (b != 0)
if(a>b)

a = a – b
else

b = b – a
return a

21

Better area version
gcd(a, b)

while (b != 0)
s = a-b
if(s<0)

swap(a,b)
else

a = s
return a

22

ã Example
l gcd(42, 28)
l (14, 28)
l (28, 14)
l (14, 14)
l (0, 14)
l (14, 0)
l è 14

Dataflow: WHILE loop structure

23

loop body

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

0

From Ben’s talk Week 1

while (b != 0)
s = a-b
if(s<0)

swap(a,b)
else

a = s
return a

GCD implementation

24

s=a-b

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

(b != 0)

0 conditional
swap, etc.

<a,b>

<a,b>

<a,b,s>

<a,b>

while (b != 0)
s = a-b
if(s<0)

swap(a,b)
else

a = s
return a

GCD implementation

25

s=a-b

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

(b != 0)

0 conditional
swap, etc.

while (b != 0)
s = a-b
if(s<0)

swap(a,b)
else

a = s
return a

<a,b>

<a,b>

<a,b,s>

<a,b>

Unroll 8 times!

Pipeline subtract
into 8 stages

Pipeline swap
into 4 stage

GCD implementation

26

s=a-b

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

(b != 0)

0 conditional
swap, etc.

while (b != 0)
s = a-b
if(s<0)

swap(a,b)
else

a = s
return a

<a,b>

<a,b>

<a,b,s>

<a,b>

GCD chip
ã Layout and fab:

l 0.13um, standard cell

27

GCD chip
ã Testing:

l Full scan for latches
l Combinational test patterns generated (Shi 2005) gave

98% coverage
l Functional tests for timing violations (Gill 2006)

ã Evaluation:

28

GCD chip: Results

29

GCD chip: Results
ã Operates correctly over a wide voltage range

30

GCD chip: Results
ã Impact of voltage variation on power consumption

31

GCD chip: Results
ã Impact of temperature performance

32

References
ã Feng Shi, Yiorgos Makris, Steven M. Nowick, and Montek Singh. “Test generation

for ultra-high-speed asynchronous pipelines.” ITC 2005.

ã Gennette Gill. Analysis and Optimization for Pipelined Asynchronous Systems. PhD
thesis. UNC Chapel Hill. 2010.

ã Gennette Gill, A. Agiwal, M. Singh, F. Shi, Y. Makris, "Low-Overhead Testing of
Delay Faults in High-Speed Asynchronous Pipelines.” ASYNC 2006.

ã Montek Singh and Steven Nowick. “MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pipelines.” ICCD 2001.

ã Montek Singh and Steven Nowick. “MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines.” TVLSI 2007.

ã Gennette Gill, J. Hansen, A. Agiwal, L. Vicci and M, Singh. "A High-Speed GCD
Chip: A Case Study in Asynchronous Design." ISVLSI 2009.

33

