Asynchronous Dataflow:
MOUSETRAP Pipelines

Montek Singh
UNC Chapel Hill

ASYNC 2022 Summer School
Week 2: June 13

MOUSETRAP Pipelines

[Singh/Nowick, ICCD 2001 & TVLSI 2007

Simple asynchronous implementation style, uses...
® transparent D-latches + standard combinational function logic

® simple control: 1 gate/pipeline stage
Uses a “capture protocol”: Latches are ...
e normally transparent while waiting for data
e become opaque after data arrives
Control Signaling: transition-signaling = 2-phase

Goals:
e fast cycle time
e simple inter-stage communication
e standard cell implementation

MOUSETRAP: A Basic FIFO

Stages communicate using transition-signaling:

1 transition acky., acky

per data item: J((/r J((/T
IniP9RIn! Inll inl

reqy doney |reqy.|

Data in Data out
Data Latch

Stage N-1 Stage N Stage N+1

“ 2nd data item flowing through the pipeline \

MOUSETRAP: A Basic FIFO (contd.)

Latch controller (XNOR) acts as “phase converter”:
e 2 distinct transitions (up or down) = pulsed latch enable

Latch Comolle
2 transitions per : J
latch cycle

1L

Data in Data out

Data Latch

Stage /N-1 Stage N Stage N+1

Latch is desablnedhehamnrexit sitmze is “diome” |

MOUSETRAP: FIFO Cycle Time

/ i
doney - :
Data in Data out

Data Latch

Latch Controller

acky

VeqN

Stage N-1 Stage NV Stage N+1
N re-enabled [~ | N+1 computes ‘
To compute }gg|

Cycle T‘me-lu T 70 .ITXNOR

MOUSETRAP: Pipeline With Logic

Simple Extension to FIFO:
insert logic block + matching delay in each stage

: |acky .
) :) rFéqn+i JL()
»(delay ; ,| |doneN »(delay ; ,| | ,

aCkN_l

Data Latch

Stage V-1 Stage N Stage N+1

“Bundled Data” Requirement:
e each “req” must arrive after data inputs valid and stable

% A fork stage has two

(or more) successors | acki
e same data and req sent L.__G:
to all /s
e wait for ack from all

) E—

Fork Stage

Out, Out,_;

*[In?x; Outy!x, .., Out,_;!x] Fork Stage

In Ben's talk: COPY, n-way link 8

% A join stage has two (or
more) predecessors

e wait for data from all
® same ack sent to all <_ ack
req?2 — -

Join Stage

ack

reql

A 4

req

req?2

Out I EEE—

Join Stage
*[Ing?arg,, In,?arg,, .., In, _;?arg.,;
Out!func(argy,arg;,..,arg,.1)

]

In Ben’s talk: FUNCTION, OPERATOR 10

Arbitration Stage

% Two input channels,
two output channels

% Only one input read
e whichever arrives first

® ... goes out on the
corresponding output

% Seitz’ Mutex is the core
e [from Brunvand’s thesis]

e surrounding logic adapts
it to transition signals

<_Jackin,

ack,

<Jackin,

reqoL >— L

ack«—3

reqiCo— L

> reqout,

{>reqout,

"

Merge without (or after) Arbitration

% A merge stage has two
(or more) predecessors

e data is taken from

whichever input channel ‘
has a new request ackl - ack
ac b
* Assumption: reql j) S
_ _ req?2 K T req
® No arbitration needed
» L [—

e input channels are
mutually exclusive

Merge w/o
arbitration

12

Merge without (or after) Arbitration

% Datapath

e mux controlled by
change detectors on
input channels

In, 1In,

'
\

Out

[[#Ing -> Ing?x
[]1 #Iny -> Ing?X

13
Out!x

]

In Ben’s talk: MERGE

ackl .

ack2

ack

reql é)
req?2 K

reql |

req2 |

datal T

mux

data? |

, MIXER

req

data

13

% Two data inputs
and one select

e first read select
e then:

> based on select,

read one of the
inputs

» do not read the
other input

e datapath

> mux + latch

Conditional Select (or event mux)

acky,,, <

req bool|:>

Bool[>

ack,

L <_Jackin

-

reqo >

ack, <

=D

—{reqout

reqq|

Condltlonal Select (or event mux)

ackpqo <
reQpool—

Out

*[C?c;
[€=0 -> Inyg?x
[] ¢c=1 -> In;?x
15
Out!x
]

Bool[>

ack,

L <_Jackin

-H

reqo >

=D

—{reqout

ack, <

reqq|

In Ben’s talk: MUX, CONTROLLED MERGE

Conditional Split (or router)

% One data input
and one select

e first read data +
select

e then:

> based on select,

send data along
one output
channel

In Ben’s talk: DEMUX, SPLIT

<_Jack,

] ack,

ackp -

rquD

reqg_>

enable

FF

—1{__>reqg

Bool[_>—

FF

—1_>req;,

16

Conditional Split (or router)

Out, Out,

*[In?x, C?c;
[€=0 -> Outy!x
[] c=1 -> Outy!x
]

]

In Ben’s talk: DEMUX, SPLIT

ackp -

rquD

reqg_>

Bool[_>—

<_Jack,
~] ack,
5 hL?
enable
\
7D— FF —L_>reqq
e orea

17

Timing Analysis

Setup constraint: matched delay
Hold Time constraint:

Data must be safely “captured” by Stage N
before new inputs arrive from Stage N-1

e Stage N's “self-loop” faster than entire path through previous

stage
%ﬁsﬁ.&eﬂﬁeﬂﬁr

1 .

—h}——w
Data Latch

Stage N-1 Stage N 18

Example: Greatest Common Divider

Euclid’s GCD algorithm

. %* Example
cd(a,
g while (b != @) ® god(42, 26)
if(a>b) * (14, 28)
a=a-b e (14, 14)
else O (14, ())
b =b -2 o= 14

return a

20

i - =
i o B ~\ = £ —
|
1 <
LA ! !
m A A
! aab « o ba «
| . 4 . 2
| |
— <] T
i -
)
A O ©
O _ _
O © o
(0] I I
~| ~ (q0) O
A ©| 5
®, * I
O ol 3 |
c
U S 5
< EE
@ ©
- S
LL] o0

Better area version

gcd(a, b)
while (b != @)
s = a-b
if(s<0)
swap(a,b)
else
a =S
return a
¥ Example
e gcd(42, 28)
e (14, 28)
e (28, 14)
o (14, 14)
e (0, 14)
e (14, 0)
e = 14

22

Dataflow: WHILE loop structure

while (b != 0)
s = a-b

if(s<0)
swap(a,b)
else
a = s
return a

In
0 1
MUX
: continue I
loop body

DEMUX
5] 1
Out

From Ben’s talk Week 1 23

loop?

GCD implementation

while (b != @)

s = a-b
if(s<0)
swap(a,b)
else
a = s
return a

continue

loop?
(b = 0)

24

GCD implementation

while (b != @)

s = a-b)
if(s<0)
swap(a,b)
else
N a=s
return a

Unroll 8 times!

Pipeline subtract
into 8 stages

Pipeline swap
into 4 stage

continue

loop?
(b = 0)

conditional

swap,

etc.

25

GCD implementation

while (b != @)

s = a-b)
l'F(S(@) In <a,b>
swap(a,b)
else
N a=s J
return a

conditional
swap, etc.

problem in

S ey
interface

-1

solution out \

98-stage ring
8 iterations

26

GCD chip

% Layout and fab:
e 0.13um, standard cell

proprenerrreey
Baren

ALIARTLLELLE R LR wuuun“uwnnnunw

’-&U{KQ SN ("K(K L’\%A

Layout

Slower Desngn

LEVARSALELAAL ERRLERAR SRR

m{’-’&‘:\mm({’
v e e

problem in

—_—r

1 iteration =
12 stages

‘_—

solution out

interface

\

LU TULCUTICTTTTTITT)
B) =
! |
I I !
S U U | '[
Faster Design |
|
Chip Die F
~ Slower Design 1
1 I
> ! : ’;‘
] 1 I |
J e e e e | J
""""""" LI U
—

98-stage ring
8 iterations

27

GCD chip

%* Testing:
e Full scan for latches

e Combinational test patterns generated (Shi 2005) gave
98% coverage

e Functional tests for timing violations (Gill 2006)

¥ Evaluation:

USB

' Chip |
I Socket

a4 = MC1 MC2

JTAG JTAG

28

GCD chip: Results

Throughput (Mega operations/second)

2100

1800

1500

1200

900

600

300

/2069 MHz

1010 MHz

20

I

40

T

60

80

Occupancy (# data items in ring)

—e— Actual
Data Limited Operation
Hole Limited Operation

29

GCD chip: Results

% Operates correctly over a wide voltage range

A S adie
T 12)/'f" "
S el
(%] {*/
% 10 //
o "2
9 &
2 g //
: /
5 6 ,'/'
© /
| S ‘o
g /
x 4 /‘I
© P
.80 /
o 2 ,.V/'
pr
0
0.5 1 1.5 2 2.5 3

Voltage (V)

30

GCD chip: Results

% Impact of voltage variation on power consumption

Power (mW)

450

375

300

N
[\S)
(6)}

150

——2.1V

1.8V
——1.5V
——1.2V

0.9V

40 60
Occupancy (# data items in rinqg)

100

31

GCD chip: Results

%* Impact of temperature performance

/
/

per Second
~
N U o

Giga Iteration Completions
ok
ol

()]

-25 0 25 50 75 100 125 150
Temperature (Celsius)

o
o

32

References

*

Feng Shi, Yiorgos Makris, Steven M. Nowick, and Montek Singh. "7est generation
for ultra-high-speed asynchronous pipelines.” 1TC 2005.

Gennette Gill. Analysis and Optimization for Pipelined Asynchronous Systems. PhD
thesis. UNC Chapel Hill. 2010.

Gennette Gill, A. Agiwal, M. Singh, F. Shi, Y. Makris, "Low-Overhead Testing of
Delay Faults in High-Speed Asynchronous Pipelines.” ASYNC 2006.

Montek Singh and Steven Nowick. "MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pjpelines.” 1CCD 2001.

Montek Singh and Steven Nowick. "MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines.” TVLSI 2007.

Gennette Gill, J. Hansen, A. Agiwal, L. Vicci and M, Singh. "A High-Speed GCD
Chip: A Case Study in Asynchronous Design."” 1SVLSI 2009.

33

