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MOUSETRAP Pipelines

[Singh/Nowick, ICCD 2001 & TVLSI 2007

Simple asynchronous implementation style, uses...
® transparent D-latches + standard combinational function logic

® simple control: 1 gate/pipeline stage
Uses a “capture protocol”: Latches are ...
e normally transparent while waiting for data
e become opaque after data arrives
Control Signaling: transition-signaling = 2-phase

Goals:
e fast cycle time
e simple inter-stage communication
e standard cell implementation



MOUSETRAP: A Basic FIFO

Stages communicate using transition-signaling:

1 transition acky., acky

per data item: J((/r J((/T
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“ 2nd data item flowing through the pipeline \




MOUSETRAP: A Basic FIFO (contd.)

Latch controller (XNOR) acts as “phase converter”:
e 2 distinct transitions (up or down) = pulsed latch enable

Latch Comolle
2 transitions per : J
latch cycle

--------------------
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Data Latch
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MOUSETRAP: FIFO Cycle Time

/ i
doney - :
Data in Data out

Data Latch

Latch Controller

acky

VeqN

Stage N-1 Stage NV Stage N+1
N re-enabled [~ | N+1 computes ‘
To compute }gg|

Cycle T‘me-lu T 70 .ITXNOR




MOUSETRAP: Pipeline With Logic

Simple Extension to FIFO:
insert logic block + matching delay in each stage

: |acky .
) : ) rFéqn+i JL( )
»( delay ; ,| |doneN »( delay ; ,| | ,

aCkN_l

Data Latch
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“Bundled Data” Requirement:
e each “req” must arrive after data inputs valid and stable



% A fork stage has two

(or more) successors | acki
e same data and req sent L.__G:
to all /s
e wait for ack from all

) E—

Fork Stage




Out, Out,_;

*[In?x; Outy!x, .., Out,_;!x] Fork Stage

In Ben's talk: COPY, n-way link 8



% A join stage has two (or
more) predecessors

e wait for data from all
® same ack sent to all <_ ack
req?2 — -

Join Stage
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Arbitration Stage

% Two input channels,
two output channels

% Only one input read
e whichever arrives first

® ... goes out on the
corresponding output

% Seitz’ Mutex is the core
e [from Brunvand’s thesis]

e surrounding logic adapts
it to transition signals
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Merge without (or after) Arbitration

% A merge stage has two
(or more) predecessors

e data is taken from

whichever input channel ‘
has a new request ackl - ack
ac b
* Assumption: reql j) S
_ _ req?2 K T req
® No arbitration needed
» L [—

e input channels are
mutually exclusive

Merge w/o
arbitration
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Merge without (or after) Arbitration

% Datapath

e mux controlled by
change detectors on
input channels

In, 1In,

'
\

Out

[ [ #Ing -> Ing?x
[]1 #Iny -> Ing?X
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In Ben’s talk: MERGE
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% Two data inputs
and one select

e first read select
e then:

> based on select,

read one of the
inputs

» do not read the
other input

e datapath

> mux + latch

Conditional Select (or event mux)
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Condltlonal Select (or event mux)
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Conditional Split (or router)

% One data input
and one select

e first read data +
select

e then:

> based on select,

send data along
one output
channel

In Ben’s talk: DEMUX, SPLIT
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Conditional Split (or router)

Out, Out,

*[In?x, C?c;
[ €=0 -> Outy!x
[] c=1 -> Outy!x
]

]

In Ben’s talk: DEMUX, SPLIT
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Timing Analysis

Setup constraint: matched delay
Hold Time constraint:

Data must be safely “captured” by Stage N
before new inputs arrive from Stage N-1

e Stage N's “self-loop” faster than entire path through previous

stage
%ﬁsﬁ.&eﬂﬁeﬂﬁr

1 .

—h}——w
Data Latch

Stage N-1 Stage N 18




Example: Greatest Common Divider



Euclid’s GCD algorithm

. %* Example
cd(a,
g while (b != @) ® god(42, 26)
if(a>b) * (14, 28)
a=a-b e (14, 14)
else O (14, ())
b =b -2 o= 14

return a
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Better area version

gcd(a, b)
while (b != @)
s = a-b
if(s<0)
swap(a,b)
else
a =S
return a
¥ Example
e gcd(42, 28)
e (14, 28)
e (28, 14)
o (14, 14)
e (0, 14)
e (14, 0)
e = 14
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Dataflow: WHILE loop structure

while (b != 0)
s = a-b

if(s<0)
swap(a,b)
else
a = s
return a

In
0 1
MUX
: continue I
loop body

DEMUX
5] 1
Out

From Ben’s talk Week 1 23
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GCD implementation

while (b != @)

s = a-b
if(s<0)
swap(a,b)
else
a = s
return a

continue

loop?
(b = 0)
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GCD implementation

while (b != @)

s = a-b )
if(s<0)
swap(a,b)
else
N a=s
return a

Unroll 8 times!

Pipeline subtract
into 8 stages

Pipeline swap
into 4 stage

continue

loop?
(b = 0)

conditional

swap,

etc.
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GCD implementation

while (b != @)

s = a-b )
l'F(S(@) In <a,b>
swap(a,b)
else
N a=s J
return a

conditional
swap, etc.

problem in

S ey
interface

-1

solution out \

98-stage ring
8 iterations
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GCD chip

% Layout and fab:
e 0.13um, standard cell

proprenerrreey
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GCD chip

%* Testing:
e Full scan for latches

e Combinational test patterns generated (Shi 2005) gave
98% coverage

e Functional tests for timing violations (Gill 2006)

¥ Evaluation:

USB

' Chip |
I Socket

a4 = MC1 MC2

JTAG JTAG

28



GCD chip: Results

Throughput (Mega operations/second)
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GCD chip: Results

% Operates correctly over a wide voltage range
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GCD chip: Results

% Impact of voltage variation on power consumption
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GCD chip: Results

%* Impact of temperature performance
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