
Custom async circuit design
from production rules to netlist

Benjamin Hill

benjamin.hill@intel.com

ASYNC Summer School 2022

mailto:benjamin.hill@intel.com


Legal Information

​Intel does not control or audit third-party data. You should consult other sources to evaluate 
accuracy.​​​

Your costs and results may vary. 

Results have been estimated or simulated

Intel disclaims all express and implied warranties, including without limitation, the implied 
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any 
warranty arising from course of performance, course of dealing, or usage in trade.

​No license (express or implied, by estoppel or otherwise) to any intellectual property rights is 
granted by this document.​​

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation 
or its subsidiaries. Other names and brands may be claimed as the property of others​.​​



Implementing custom circuit designs

Our task: 
Given a gate-level system expressed as production rule set (PRS), 

generate netlist (SPICE) and physical implementation (layout)

Do as little full custom design as possible!

Stay tuned for later sessions describing more automated
parts of the Yale physical implementation flow



Production rule basics

a

b

out

b

a

out

pull
UP

network

out

a,b

pull
DOWN

network

out

a,ba & b -> out-

~a & ~b -> out+



Production rule sets form gates

in out

pull
UP

network

pull
DOWN

network

outin
~in -> out+
in -> out-



Custom design flow

prs2net

https://avlsi.csl.yale.edu/act/doku.php?id=custom:start



CMOS transistors



CMOS transistors
    

           

    

           

PMOS                                           NMOS
conducts current 

between source and drain
(through P-type channel)

when gate is LOW

conducts current 
between source and drain
(through N-type channel)

when gate is HIGH

voltage-controlled
switch



S D D S

G G

p substrate
n well

n+n+p+p+

    

           

    

           

PMOS                                NMOS

cross section

layout
(top down view)

schematic
symbol

G G

S D D S



CMOS transistors
    

           

    

           

PMOS                                           NMOS

p substrate
n well

n+n+p+p+

G G

S D D S  

    

    

           

    

    

           

G G

S D D S  
B                                B



Transistor operation: cutoff

p substrate
n well

n+n+p+p+

1

PMOS                                           NMOS

0

G=1                              G=0

S=1         D=1                  D=0         S=0
B=1                              B=0



Transistor operation: channel formation

p substrate
n well

n+n+p+p+

G=0                              G=1

S=1         D=1                  D=0         S=0
B=1                              B=0

0

PMOS                                           NMOS

1

inversion region
forms channel



Transistor operation: saturation

p substrate
n well

n+n+p+p+

0

PMOS                                           NMOS

1

current flows
through channelG=0                              G=1

S=1         D=0                  D=1         S=0
B=1                              B=0



Transistor operation: cutoff

p substrate
n well

n+n+p+p+

1

PMOS                                           NMOS

0

G=1                              G=0

S=1         D=0                  D=1         S=0
B=1                              B=0

no channel
no current



CMOS transistors
    

           

    

           

PMOS                                           NMOS
conducts current 

between source and drain
(through P-type channel)

when gate is LOW

conducts current 
between source and drain
(through N-type channel)

when gate is HIGH

voltage-controlled
switch



Layout and sizing



Layout example: inverter Vdd

GND

o
u

t

i
nin out

in out

in out

0 1

1 0



Design rules

set of geometric restrictions intended to yield 
high probability of correct fabrication, 
operation, and lifetime

Vdd

GND

o
u

t

i
n

https://skywater-pdk.readthedocs.io/en/main/rules



Transistor sizing

𝐿

𝑊𝑁

𝑊𝑃Skywater 130 
simplified design rules

λ 75 nm*

𝐿 2 λ

𝑊𝑁 6 λ

𝑊𝑃 10 λ

https://github.com/asyncvlsi/sky130l

* minimum feature size for Skywater 130 
is 150nm transistor gate length



Sizing – how and why

• W, L, lambda

• ACT sizing body, prs body, default config

• Gates drive capacitance: think of simple R-C circuit

• Switching burns energy: charge and discharge capacitor

• Always trading off energy/area/performance



Transistor performance scaling intuition

𝐿

𝑊

Transistor device with
width and length parameters

What happens as we vary them?



Analogy: resistors

Increased resistance, decreased current

D
e

cr
e

as
e

d
 r

es
is

ta
n

ce
,

in
cr

e
as

e
d

cu
rr

en
t

current through resistor
(aka “drive strength”)

is inversely proportional to
effective resistance

𝐼 =
𝑉

𝑅

𝑅

𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
1

1

𝑅1
+

1

𝑅2

=
𝑅

2

𝑅𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑅1 + 𝑅2 = 2𝑅



Transistor performance scaling intuition

𝐿

𝑊

2𝑊

2𝐿

Increasing gate L decreases drive strength

In
cr

e
as

in
g

tr
an

si
st

o
r 

W
in

cr
e

as
e

s
d

ri
ve

 s
tr

en
gt

h

Key performance metric:
current through transistor

effective resistance
“drive strength”

p substrate
n+n+

Channel cross-section



Digital designer summary

Use NMOS in pull-down network, PMOS in pull-up
⇒ single stage logic is always inverting

Transistor drive strength ∝
𝑊𝑖𝑑𝑡ℎ

𝐿𝑒𝑛𝑔𝑡ℎ

⇒ use minimum gate length for digital logic (usually)



State-holding gates



Combinational vs state-holding gates

Combinational

• Either UP or DOWN (but not both) is always conducting

State-holding

• At times neither UP nor DOWN is conducting

• out is undriven and maintains its previous value

Interfering

• Both UP and DOWN conducting simultaneously

• Causes short-circuit/crowbar current through gate, should 
not be more than transient

pull
UP

network

pull
DOWN

network

outin



Example state-holding gate: Muller C-element

C
a

out

b

a & b -> out+
~a & ~b -> out-

a b out

0 0 0

0 1 hold previous state

1 0 hold previous state

1 1 1

not CMOS implementable!

a & b -> _out-
~a & ~b -> _out+

_outC
a

b

inverting C-element

_out -> out-
~_out -> out+

out

plus inverter

a & b #> _out-
_out => out-

C
a

out

b

shorthand syntax



Problem: undriven dynamic nodes

a

b

a

b

_out

0

0 

0

0

_outC
a

b

a & b -> _out-
~a & ~b -> _out+ 1

0

1 

1

0

X

a b _out

0 0 1

0 1 hold previous state

1 0 hold previous state

1 1 0

Solution: staticizers



C-element PRS to SPICE example

a

b

a

b

_out
out

defproc celem (bool? a,b; bool! out)
{
bool _out;
prs {
a & b #> _out-
_out => out-

}
}

C
a

out

b



SPICE basics
*---- act defproc: inv<> -----
* raw ports:  in out

.subckt inv in out
*.PININFO in:I out:O
*.POWER VDD Vdd
*.POWER GND GND
*.POWER NSUB GND
*.POWER PSUB Vdd
* --- node flags ---
* out (combinational)
* --- end node flags ---
M0_ Vdd in out Vdd p W=1.5U L=0.6U
M1_ GND in out GND n W=0.9U L=0.6U

.ends
*---- end of process: inv<> -----

*---- act defproc: buf<> -----
* raw ports:  in out
.subckt buf in out
xstage1 in __out inv
xstage2 __out out inv
.ends
*---- end of process: buf<> -----

Define new subcircuit (cell):
.subckt name ports

Comments begin with * 
Metadata generated by prs2net

MOSFET instances:
Mname D G S B type <param=val>

End of inv subcircuit:

Instantiate subcircuits hierarchically:
xname ports cellname



C-element PRS to SPICE example



C-element with weak keeper staticizer

a

b

a

b

_out
out

w

defproc celem (bool? a,b; bool! out)
{
bool _out;
prs {
a & b #> _out-
_out => out-

}
}

C
a

out

b



C-element with combinational feedback

C
a

out

b

_out

a

b

a

b

out

a b

a b

defproc celem_comb (bool? a,b; bool! out)
{
bool _out;
prs {
[comb=1] a & b #> _out-
_out => out-

}
}



van Berkel C-element
a

b

a

b

_out
out

b

a

b

a

C
a

out

b

defproc celem_H (bool? a,b; bool! out)
{
bool _out;
bool nmid[2], pmid[2];
prs {
// N-stack
[keeper=0] a -> nmid[0]-
[keeper=0] b -> nmid[1]-
passn (out, nmid[0], nmid[0])
passn (b, nmid[0], _out)
passn (a, nmid[1], _out)

// Symmetric P-stack, out inverter
…

}
}



Simulation options

Gate level Switch level Analog

simulator prsim, actsim irsim Xyce

input ACT PRS .sim SPICE

to generate
write directly or

use e.g. chp2prs
prs2sim prs2net

model unit delay RC delay full analog

fidelity lowest medium highest

speed fastest fast slow



Full custom flow example

defproc inv (bool? in; bool! out)
{

prs { in => out- }
}

*---- act defproc: inv<> -----
.subckt inv in out
*.PININFO in:I out:O
*.POWER VDD Vdd
*.POWER GND GND
*.POWER NSUB GND
*.POWER PSUB Vdd
* --- node flags ---
* out (combinational)

M0_ Vdd in out Vdd p W=1.5U L=0.6U
M1_ GND in out GND n W=0.9U L=0.6U

.ends
*---- end of process: inv<> -----

in out

in out

Vdd

GND

o
u

t

i
n

in out

0 1

1 0

Design specification Production rules

Netlist (SPICE)

Schematic

Layout

write or
compile prs2net

prs2sim

full custom or 
semi-automated

CHP, dataflow,
link-joint, etc

extracted
parasitics


