Yale

ASIC flow: mapping to cells

Rajit Manohar

Asynchronous VLSI and Architecture (AVLSI) Group
Computer Systems Lab, Yale University

https://csl.yale.edu/~rajit/
https://avlsi.csl.yale.edu/act

AVLSI

Basic idea

+ Convert entire design into a set of pre-
defined blocks (“cells”)

< Examples
» two-input NAND gate
» two-input C-element
» inverters with different sizing

» ... etc ...

« Each cell is implemented at the transistor-
level once

+ Rectangular geometry with input/output
connection points (“pins”)

Example from Skywater 130 library

for synchronous logic
https://antmicro-skywater-pdk-docs.readthedocs.io

Yale AVLSI

Input: gate-level design in ACT

- GGate level design can have
< Explicitly instantiated cells

<+ Production rules

« Explicitly instantiated cells
% We use your cell instances as specified
< Each cell needs a physical implementation
<+ Example:

» Mapping arithmetic (e.g. “x + y”) using logic synthesis results in a collection of
gates selected by the logic synthesis tool

% A technology-independent cell library for combinational logic is available, based
on James Stine’s open-source library in 180nm (“OSU library”)

Yale AVLSI

Input: gate-level design in ACT

- Production rule mapping prs {

A & B # Y-

Y<30> -> W-
~Y<30> -> W+

}
« Unique cells are identified
A& B -> Y- Y<30> -> W-
~A & ~B -> Y+ ~Y<30> -> W+

- ACT is re-written to explicitly instantiate these cells

% An ACT cell library is generated, consisting of unique production rules across the
design

< An existing ACT cell library can be re-used, and is extended if necessary

Yale AVLSI

Open-source ACT based on OSU library

Yale

export defcell NOR2X1 (bool? A, B; bool!

{
prs {
A | B = Y-
}
sizing { Y {-1} }
}

.subckt NOR2X1 vdd B gnd Y A

MO a 9 54# A vdd vdd pfet w=4u 1=0.2u
+ ad=0p pd=0u as=0p ps=0u

M1 Y B a 9 54# vdd pfet w=4u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M2 Y A gnd Gnd nfet w=1lu 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M3 gnd B Y Gnd nfet w=1lu 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

.ends NOR2X1

SACT_HOME/act/std/cells.act

Y)

ACT cell

Original
OSU cell

AVLSI

Open-source ACT based on OSU library

Yale

.subckt HAX1 vdd gnd YC A B YS

MO vdd A a 2 74# vdd pfet w=2u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M1 a 2 74# B vdd vdd pfet w=2u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M2 vdd a 2 74# YC vdd pfet w=2u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M3 a 41 74# a 2 74# vdd vdd pfet w=2u 1=0.2u
+ ad=0p pd=0u as=0p ps=0u

M4 a 49 54# B a 41 74# vdd pfet w=4u 1=0.2u
+ ad=0p pd=0u as=0p ps=0u

M5 vdd A a 49 54# vdd pfet w=4u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M6 YS a 41 74# vdd vdd pfet w=2u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M7 a 9 6# A gnd Gnd nfet w=2u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M8 a 2 74# B a_9 6# Gnd nfet w=2u 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M9 gnd a 2 74# YC Gnd nfet w=1lu 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

M10 a 38 6# a 2 74# gnd Gnd nfet w=2u 1=0.2u
+ ad=0p pd=0u as=0p ps=0u

M1l a 41 74# B a_ 38 6# Gnd nfet w=2u 1=0.2u
+ ad=0p pd=0u as=0p ps=0u

M12 a 38 6# A a 41 74# Gnd nfet w=2u 1=0.2u
+ ad=0p pd=0u as=0p ps=0u

M13 YS a 41 74# gnd Gnd nfet w=1lu 1=0.2u

+ ad=0p pd=0u as=0p ps=0u

.ends HAXI1

Original
OSU cell

AVLSI

Open-source ACT based on OSU library

Yale

export defcell HAX1 (bool? A, B; bool! YC, Y¥YS)

bool YC,

prs {

A & B => YC-
_YC => YC-

_YC & (A
_YS => YS-

sizing { YC{-1}; YC{-1}; Y¥S{-1}; ¥YS{-1} }

.subckt HAX1 vdd gnd YC A B ¥S
2_74# vdd pfet w=2u 1=0.2u

u as=0p ps=0u

2_74# B vdd vdd pfet w=2u 1=0.2u

=0p pd=0u as=0p p

dd a_: 4 YC vdd p

=2u 1=0.2u

p
vdd vdd pfet
0p ps=0u

vdd pfet

2u 1=0.2u

54
u as=0p ps=0u
4# vdd vdd pfet
u as=0p p
nd Gnd n

=4u 1=0.2u

2u 1=0.2u

2u 1=0.2u

u 1=0.2u

=1lu 1=0.2u

+ ad=0p p

M10 a_38_ =0.2u
.2u
2u

.ends HAX1

ACT ce

> YS-

Origina
OSU ce

AVLSI

Usage scenarios

- “l have all my cells and they have been instantiated already!”
% ACT can use your cells as “black box” components
% For each cell, we will need

» Black-box: declare cell but do not provide a definition

export defcell MY TWO INPUT CELL (bool? A, B; bool! Y);

» LEF, GDS, timing information from .lib (as in a normal cell library)

 Using an existing physical design flow? (e.g. a commercial tool)
% Map everything to cells
% Export Verilog netlist or DEF file

% Use your cell library

Yale AVLSI

Usage scenarios

- “l don’t have any cells!”
% The ACT flow can get you started...

» Initial placement of transistors, ready to be wired up
» Key requirement: “Skyline” layout

- “| have some cells, but not sure if | have them all”

<+ ACT will let you know if there are any missing cells when mapping to the design

Yale AVLSI

ACT supports gridded cells

Ca—

N-well
HiE EjE 0N
P-well
Cell
outline
‘ GND | \
“Standard” cells “Gridded” cells
most cells are fixed height (e.qg. cells width and height is integer
12 tracks), width is integer multiple of tracks; can have
multiple of tracks; some “multi-deck” cells

‘multi-height” cells

Yale AVLSI

