
AVLSI

Introduction to the ASYNC
summer school

AVLSI

Logistics
• Questions and Answers

❖ Please use Mattermost!

‣ Self-signup for account
 https://bit.ly/3a6Xzto

‣ Mattermost link
 https://avlsi.csl.yale.edu:8000/
Channel: summer2024

• Three weeks, 9:00AM to 1:00PM Eastern Time
❖ Mon July 1: Behavioral design
❖ Mon July 8: Gate-level design
❖ Mon July 15: Circuit and physical design

• Slides, videos: https://asyncsymposium.org/async2024/

Mattermost self-signup link

AVLSI

Registration summary

0

0.2

0.4

0.6

0.8

Fa
milia

r w
ith

 HDL

FP
GA des

ign
er

ASIC des
ign

er

6%
8%

7%

40%

18%

18%

3%

Government
Undergraduate
Industry
Graduate student
Faculty
Research staf
Other

Attended 2022 summer school: 15%

AVLSI

Week 1 schedule

9:00 AM Welcome Ivan Sutherland

9:10 AM Overview + introduction to asynchronous design Rajit Manohar

9:40 AM break

9:45 AM Message-passing behavioral description Rajit Manohar

10:45 AM Examples

11:00 AM Pipelined asynchronous circuits: basic performance estimation Montek Singh

11:45 AM Examples

11:55 AM break

12:00 PM From dataflow to gates Montek Singh

1:00 PM End of Day 1

AVLSI

Relation to summer school from 2022
• Week 1 changes

❖ 2022: link and joint abstraction for circuit-independent design

‣ Slides, videos are available online:
❖ 2024: dataflow to gates

• Week 2 changes
❖ 2022: focus on syntax-directed translation
❖ 2024: Petri-net based synthesis

• Week 3 changes
❖ 2022: custom cell ASIC flow
❖ 2024: integration with analog/mixed-signal flows and standard cell flows

https://avlsi.csl.yale.edu/act/doku.php?id=summer2022:start

AVLSI

Introduction to
asynchronous design
Rajit Manohar

AVLSI

Approaches to computation

• Event-driven at the (digital) circuit level of
abstraction
❖ “Data-driven computing”
❖ “Self-timed computing”
❖ “Asynchronous computing”
❖ “Clockless computing”

Discrete Time Continuous Time

Discrete Value Digital, synchronous logic Digital, asynchronous logic

Continuous Value Switched-capacitor analog General analog computation

Logic

AVLSI

Discrete versus continuous time

tim
e

A1

B2

B4

B3

B1

A2 C2

C1

A3

A4
C4

C3

A B C

tim
e

A1 B1

A2

C2

C1

A3

A4

C4

C3

A B C

B2

B3

B4

Discrete-time computation Continuous-time computation

AVLSI

Computing asynchronously

• When the input arrives, the function is triggered
• Eventually the output is produced

functioninputs outputs

AVLSI

Computing asynchronously

• When the input arrives, the computation is triggered
• Eventually the output is produced

❖ We need to know when the output is ready

functioninputs outputs

delayed signal, generated by the function, etc.

AVLSI

Computing asynchronously

• When the input arrives, the computation is triggered
• Eventually the output is produced

❖ We need to know when the output is ready
❖ We need to know when we can produce the next output

functioninputs outputs

delayed signal, generated by the function, etc.

AVLSI

Basic model
• Chip is a parallel program

❖ Components: processes
❖ Communication: via message-passing channels
❖ Explicit synchronization through communication

data

request

acknowledge

X X

request
acknowledge

datase
nd

er

re
ce

ive
r

request
acknowledge

datase
nd

er

re
ce

ive
r

AVLSI

A compute pipeline

• Data moves through the pipeline at its own pace

request
acknowledge

datase
nd

er

re
ce

ive
r

request
acknowledge

datase
nd

er

re
ce

ive
r

request
acknowledge

datase
nd

er

re
ce

ive
r

request
acknowledge

datase
nd

er

re
ce

ive
r

request
acknowledge

datase
nd

er

re
ce

ive
r

request
acknowledge

datase
nd

er

re
ce

ive
r

Process A Process B

AVLSI

A little bit of (biased) history…

1940 1950 1960 1970

Binary addition
(von Neumann)

Illiac II (UIUC/Muller)

Macro modular systems
(Clarke, Molnar, Stucki,…)

Flow tables
(Huffman)

System Timing (Seitz, in
Mead/Conway)

Switching
theory (Miller) Atlas, MU5 (Manchester)

metastability
(Chaney/Molnar)

“There was never any real question of using a clock. Atlas [1962] had
been asynchronous, for good reasons, so the new machine would be.
In any case, it was going to be physically so big that it would not have
been any use having a clock.”

— The History of MU5 (U. of Manchester)

AVLSI

Managing noise in hand-wired computers…
• The physical issue…

❖ Signaling noise, and coupling between wires

• Wires were manually routed…
❖ … so we don’t know exactly where they are going to be!

• Instead
❖ Force one wire to be routed carefully (the clock)
❖ Make it slow so that all the noise settles

The Atlas: backplane wiring

AVLSI

An example: asynchronous binary addition

• Slow part: computing carry values
• Standard technique: classify input cases into three categories

❖ kill
❖ propagate
❖ generate

1 1 0 0 0

1 0 1 1 0 0

+ 0 1 1 0 1 0

1 0 0 0 1 1 0

AVLSI

An example: asynchronous binary addition

• We need to compute the cumulative effect of the k-p-g encoding
❖ Combine codes to: [], [1], [1..2], [1..3], [1..4], etc.
❖ “Prefix computation”

6 5 4 3 2 1

p p g p p k -
g g k k k p

[1..5] [1..4] [1..3] [1..2] [1] []

1 1 0 0 0

1 0 1 1 0 0

+ 0 1 1 0 1 0

1 0 0 0 1 1 0

kpg block of size n

X1 X2 Xn

Y1 Y2 Yn

AVLSI

Simple topology for combining the codes

X1 X2 XnX3

[1] [1..2]
<latexit sha1_base64="/8nJU/pnEuje2nhf6KsFRubaDHw=">AAAB73icbVDLSsNAFL3xWeur6tLNYBHcGBLxtSy6cVnBPiANZTKdtEMnM3FmIpTQn3DjQhG3/o47/8Zpm4W2HrhwOOde7r0nSjnTxvO+naXlldW19dJGeXNre2e3srff1DJThDaI5FK1I6wpZ4I2DDOctlNFcRJx2oqGtxO/9USVZlI8mFFKwwT3BYsZwcZK7cB3XXHqh91K1XO9KdAi8QtShQL1buWr05MkS6gwhGOtA99LTZhjZRjhdFzuZJqmmAxxnwaWCpxQHebTe8fo2Co9FEtlSxg0VX9P5DjRepREtjPBZqDnvYn4nxdkJr4OcybSzFBBZovijCMj0eR51GOKEsNHlmCimL0VkQFWmBgbUdmG4M+/vEiaZ65/6V7cn1drN0UcJTiEIzgBH66gBndQhwYQ4PAMr/DmPDovzrvzMWtdcoqZA/gD5/MHXxWO5Q==</latexit>

[1..n� 1]
<latexit sha1_base64="Hu3wl0RbtCHMl1ltUmWbZzpLMe8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gGbJcxOOsmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrTATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqh1Sj4BIbhhuB7UQhjUKBrXB0O/VbT6g0j+WjGScYRHQgeZ8zaqz04JOgW664VXcGsky8nFQgR71b/ur0YpZGKA0TVGvfcxMTZFQZzgROSp1UY0LZiA7Qt1TSCHWQzU6dkBOr9Eg/VrakITP190RGI63HUWg7I2qGetGbiv95fmr610HGZZIalGy+qJ8KYmIy/Zv0uEJmxNgSyhS3txI2pIoyY9Mp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gDFqI16</latexit>

[]
1 1 0 0 0

1 0 1 1 0 0

+ 0 1 1 0 1 0

1 0 0 0 1 1 0

In some cases, we don’t need to wait!

Theorem [von Neumann, 1946]. The average-case latency for a ripple carry binary adder
is O(log N) for i.i.d. inputs

Theorem [Winograd, 1965]. The worst-case latency for binary addition is Ω(log N)

AVLSI

Tree structure for computing carry information

[1..4] [5..8]

[] [1..4]

[] [1] [1..2] [1..3] [1..4] [1..5]

[1..8]

[5] [6]

[5]

[5..6] [7..8]

[5..6]

[1..4] [1..6]

[1] [2]

[1]

[3] [4]

[3]

[1..2] [3..4]

[1..2]

[] [1..2]

[1..6] [1..7][7] [8]

[7]

1 1 1 1

22

3

AVLSI

Tree structure for computing carry information

[1..4] [5..8]

[] [1..4]

[] [1] [1..2] [1..3] [1..4] [1..5]

[1..8]

[5] [6]

[5]

[5..6] [7..8]

[5..6]

[1..4] [1..6]

[1] [2]

[1]

[3] [4]

[3]

[1..2] [3..4]

[1..2]

[] [1..2]

[1..6] [1..7][7] [8]

[7]

5

4

4

5

4

5 5

6
6

6
6

6

AVLSI

Compute the carries in two ways, pick the first one!

[1..4] [5..8]

[] [1..4]

[] [1] [1..2] [1..3] [1..4] [1..5]

[1..8]

[5] [6]

[5]

[5..6] [7..8]

[5..6]

[1..4] [1..6]

[1] [2]

[1]

[3] [4]

[3]

[1..2] [3..4]

[1..2]

[] [1..2]

[1..6] [1..7][7] [8]

[7]

[1..4]

[1..2] [1..4] [1..6]

The average-case latency for this structure is O(log log N) for i.i.d. inputs!

AVLSI

Exploiting asynchrony
• Exploiting the gap between the average-case and worst-case

❖ … but you have to design the underlying computation structure (algorithm) to exploit it

• Power management
❖ Dynamic switching activity only where computation is occurring

• Robustness
❖ Circuit families that are timing / delay insensitive can be robust to process, voltage, and temperature changes

• Continuous-time operation
❖ Bandwidth-adaptive signal processing in continuous time

• Mixed-signal electronics
❖ Substrate noise can be less of an issue

AVLSI

Example asynchronous microprocessors

• ~20K transistors
• 16-20 MIPS (1.6µm feature size)
• 1989, Caltech

A. J. Martin, S. M. Burns, T.K. Lee, D.
Borkovic, P.J. Hazewindus

The first asynchronous microprocessor A 32-bit MIPS R2000 microprocessor (TITAC-2)

• ~ 500K transistors
• 50 MIPS (0.5µm)
• U. of Tokyo (1996)

A. Takamura, M. Kuwako, M. Imai, T. Fujii,
M. Ozawa, I. Fukasaku, Y. Ueno, T. Nanya

AVLSI

Example asynchronous microprocessors

Amulet2e (ARM microprocessor)

• ~ 454K transistors
• 32-bit microprocessor
• 27 MIPS (0.5µm)
• U. Manchester (1996)

S.B. Furber, J.D. Garside, S. Temple, J. Liu, P. Day,
N.C. Paver

MIPS R3000 (MiniMIPS) microprocessor

• ~ 2.1M transistors
• 32-bit microprocessor
• 250 MIPS (0.6µm) / 180 MIPS (RC)
• Caltech (1998)

A. J. Martin, A. Lines, R. Manohar, M. Nystrom,
P. Penzes, R. Southworth, U. Cummings, T.K. Lee

AVLSI

Commercial ethernet switch chips

• Ethernet switch chip (FM6000)
• 1.28Tbps switching
• NAT / VXLAN support
• 65nm technology
• Fulcrum (2012)

AVLSI

Neuromorphic chips

• “TrueNorth” chip
• Fully digital neuromorphic architecture
• 5.4B transistors
• 28nm technology
• IBM/Cornell (2014)

• “Loihi” neuromorphic chip
• Fully digital neuromorphic architecture
• 14nm technology
• Intel (2018)

