Yale ENGINEERING

Behavioral description with
message-passing

Rajit Manohar

AVLS|

Communicating Hardware Processes

« Behavioral language

+ CHP = Communicating hardware processes

+ Based on Tony Hoare’s CSP (Communicating Sequential Processes) language
« Simplified programming language

« Assignment-based language, but...

) «

¢ No memory allocation (“new” “malloc” etc.) bool x;

)«

+ No memory references (“pointers” “references” etc.) .
int y;

» Basic data types: Booleans and unsigned integers int<8> z:

Yale ENGINEERING AVLSI

Basic language constructs

« Simple statements

+ skip statement that does nothing!
»x:=E assignment statement

» Evaluate expression on the right-hand side, assign it to the variable on the left-hand side: just like a standard
software programming language.

b :=b & w | ~C X := y*3 + 5 b+ wW-
X = y{3..2} + 7 X = {p,q9{3..2}} X = (a>02?2 b : myf(c,d))

% Sequencing: S1; S2

t 1= xX; x :=vy; skip; y = t

https://avlsi.csl.yale.edu/act/doku.php?id=language:expressions

Yale ENGINEERING AVLSI

Arrays

* In hardware, an array results in an address-calculation mechanism

x[1] := x[1] + 1

« Array access is of two kinds
+ Standard array, where array index requires run-time information, or

% Array index is a run-time constant

X[0] := x[0] + 1

« Only use standard arrays when absolutely necessary!

Yale ENGINEERING AVLSI

Example ACT CHP program

Process definition
defproc mytest ()

{
int x[3]; // C++ style comments
// implicit: 32 bits
Sublanguage body chp {

z = 0;
X[1] = z + 3;
z := XxX[1] * 2

Note: in CHF, semi-colon is used as a separator (no trailing semi-colon)

Yale ENGINEERING AVLSI

Conditional execution via selection statements

« Selections: generalized if-statements

|l
o

[x> 10 -> y :
[] x < 10 -> vy :
]

|l
S

+ |f some condition (guard) is true, execute corresponding statement
+ |f all guards are false, then wait

< |If multiple guards are true, error!

« To allow multiple true options, use non-deterministic selection

3
4

x > 10 -> vy :
X < 10 -> y :
X > 8 >y := 17

a
]
]

]

Yale ENGINEERING AVLSI

The “chp-txt” sublanguage: text version of CHP

« Selections: generalized if-statements .
chp-txt equivalent

case X > 8: y := 7

1
C x> 10 => y 1= 3 select {
(1 x < 10 —> = 4 case xXx > 10: y := 3;
Y case X < 10: y := 4
]
}

+ |f some condition (guard) is true, execute corresponding statement

+ |f all guards are false, then wait

< |If multiple guards are true, error!

 To allow multiple true options, use non-deterministic selection chp-txt equivalent
lect
| x> 10 => y 1= 3 arb select {
_ case x > 10: y := 3;
] x < 10 ->y = 4 case x < 10: 2= 4;
'] x> 8 ->y := 7 A !
]

}

Yale ENGINEERING

Loops

+ While loop chp-txt equivalent
1 :=0; J := 0;

*[1< 10 > while (i < 10) {
j oi= J 4+ i; J == J + 1;
i =i+ 1 i :=1 + 1
] }

« Generalized deterministic loop chp-txt equivalent

*[x> 10 -=> y := 3; x:=x - 1 while {
[] x < 10 >y = 4; x := x + 1 case x > 10 : y = 3;
] X = xXx - 1;
case xXx < 10 y = 4;
+ |f some condition (guard) is true, execute corresponding block % = % + 1

and then go back to the beginning of the loop)

+ All guards false: exit

+ More than one true guard: error

Yale ENGINEERING AVLSI

More language constructs

* Internal parallelism: $1, S2

*[x> 10 ->y := 3, xX:=x -1
[] X < 10 >y =4, x := x + 1
]
« Common short-hand
% Infinite loop chp-txt equivalent
forever {
*[true -> STMTS] *[STMTS] STMTS
}
+ Wait for some condition
[COND —-> skip] . COND] chp-txt equivalent

wait-for (COND)

Yale ENGINEERING AVLSI

Communication with other processes

« Hardware modules exchange information via communication channels

« Channel
+ single-sender, single-receiver

%+ a matching send and receive behaves as a distributed assignment

X1e Evaluate “e” and vox Receive value from
send it on output port X input port Y and
assign it to variable “x”
send (X, e) Chp-txt chp-txt recv (Y, x)

+ |f these two ports are connected, then this has the net effect of
X 1= e

« Channels are blocking: a send waits for matching receive, and a receive waits for a matching send.

Yale ENGINEERING AVLSI

Overall hardware description

« A parallel collection of communicating hardware processes

+ By default, no shared state

« Connections between processes via channels to exchange information

+ (General shared variables possible; ignoring for this summer school!)

» For this summer school, syntax for connections, type declarations, etc. in the ACT language

+ There are other examples of CSP-like languages (e.g. Occam)

Yale ENGINEERING AVLSI

Example: one-place buffer

« One-place buffer, initially empty
<+ Empty state
» Only operation that is valid: read next input
L?x
» Final state: full
+ Full state
» Only operation that is valid: send value on output
R!x
» Final state: empty

<+ Empty state to empty state:
L?xX; R!X

« Buffer repeats this forever: *[L?x; RI!x]

forever {
recv (L,xX);
send (R,Xx)

}
Yale ENGINEERING

chp-txt

Input port L

——)- N variable

Local state

X

Output port R

defproc buffer(chan?(int) L; chan! (int) R)

{

}

int x;

chp {

}

*[L?X;

RIx]

// local state

AVLS!

Example: two input, one output process

defproc adder(chan?(int) A,B; chan!(int) O)

{

int x,y; // local state Input port A

—-| _ocal state| Output port O
chp { Ig
*[A?x, B?y; variables
] Input port B

}

}

Yale ENGINEERING AVLSI

Synchronization operations are part of message-passing

*[A?xX;B?y; Ol (x+y)]

Input port A
*[Ap!l] ==|localstate
N
variables
Input port B

Output port O
*[Op?z]

« Communication actions synchronize different parallel processes

+ Knowing where one process is in its local program can give you information about what other processes in the
system are doing.

Yale ENGINEERING AVLSI

Non-determinism induced by the environment

* Problem: two input ports A and B and one output Z

%+ Receive the “next input” from either A or B

+ Send this value on the output Z

* We need some new syntax!

+ Probe: “is there a communication pending on this port?”

*[[| #A -> A?x
'] #B -> B?X
17

Z21x

« Use with care, and only when absolutely necessary

Yale ENGINEERING AVLSI

