
AVLSI

Behavioral description with
message-passing
Rajit Manohar

AVLSI

Communicating Hardware Processes
• Behavioral language

❖ CHP = Communicating hardware processes
❖ Based on Tony Hoare’s CSP (Communicating Sequential Processes) language

• Simplified programming language

• Assignment-based language, but…
❖ No memory allocation (“new”, “malloc”, etc.)
❖ No memory references (“pointers”, “references”, etc.)

• Basic data types: Booleans and unsigned integers

 bool x;  

 int y;  

 int<8> z;

AVLSI

Basic language constructs
• Simple statements

❖ skip statement that does nothing!
❖ x := E assignment statement

‣ Evaluate expression on the right-hand side, assign it to the variable on the left-hand side: just like a standard
software programming language.

❖ Sequencing: S1; S2

b := b & w | ~c x := y*3 + 5 b+ w-

https://avlsi.csl.yale.edu/act/doku.php?id=language:expressions

x := y{3..2} + 7 x := {p,q{3..2}} x := (a > 0 ? b : myf(c,d))

t := x; x := y; skip; y := t

AVLSI

Arrays
• In hardware, an array results in an address-calculation mechanism

• Array access is of two kinds
❖ Standard array, where array index requires run-time information, or
❖ Array index is a run-time constant

• Only use standard arrays when absolutely necessary!

 x[i] := x[i] + 1

 x[0] := x[0] + 1

AVLSI

Example ACT CHP program

defproc mytest()  
{

 int<8> z;
 int x[3]; // C++ style comments  
 // implicit: 32 bits

 chp {
 z := 0;
 x[1] := z + 3;
 z := x[1] * 2
 }
}

Process definition

Sublanguage body

Type definitions for
variables

Note: in CHP, semi-colon is used as a separator (no trailing semi-colon)

AVLSI

Conditional execution via selection statements
• Selections : generalized if-statements

❖ If some condition (guard) is true, execute corresponding statement
❖ If all guards are false, then wait
❖ If multiple guards are true, error!

• To allow multiple true options, use non-deterministic selection

 [x > 10 -> y := 3
 [] x < 10 -> y := 4
]

 [| x > 10 -> y := 3
 [] x < 10 -> y := 4
 [] x > 8 -> y := 7
 |]

AVLSI

The “chp-txt” sublanguage: text version of CHP
• Selections : generalized if-statements

❖ If some condition (guard) is true, execute corresponding statement
❖ If all guards are false, then wait
❖ If multiple guards are true, error!

• To allow multiple true options, use non-deterministic selection

 [x > 10 -> y := 3
 [] x < 10 -> y := 4
]

 [| x > 10 -> y := 3
 [] x < 10 -> y := 4
 [] x > 8 -> y := 7
 |]

select {
 case x > 10: y := 3;
 case x < 10: y := 4
}

arb_select {
 case x > 10: y := 3;
 case x < 10: y := 4;
 case x > 8: y := 7
}

chp-txt equivalent

chp-txt equivalent

AVLSI

Loops
• While loop

• Generalized deterministic loop

❖ If some condition (guard) is true, execute corresponding block
and then go back to the beginning of the loop

❖ All guards false: exit
❖ More than one true guard: error

 i := 0; j := 0;
*[i < 10 ->
 j := j + i;
 i := i + 1
]

 *[x > 10 -> y := 3; x:= x - 1
 [] x < 10 -> y := 4; x := x + 1
]

 i := 0; j := 0;
 while (i < 10) {
 j := j + i;
 i := i + 1
 }

chp-txt equivalent

 while {
 case x > 10 : y := 3;
 x := x - 1;
 case x < 10 : y := 4;
 x := x + 1
 }

chp-txt equivalent

AVLSI

More language constructs
• Internal parallelism: S1 , S2

• Common short-hand
❖ Infinite loop

❖ Wait for some condition

 *[x > 10 -> y := 3, x:= x - 1
 [] x < 10 -> y := 4, x := x + 1
]

 *[true -> STMTS] *[STMTS]

 [COND -> skip] [COND]

forever {
 STMTS
}

wait-for (COND)

chp-txt equivalent

chp-txt equivalent

AVLSI

Communication with other processes
• Hardware modules exchange information via communication channels
• Channel

❖ single-sender, single-receiver
❖ a matching send and receive behaves as a distributed assignment

❖ If these two ports are connected, then this has the net effect of

• Channels are blocking: a send waits for matching receive, and a receive waits for a matching send.

X!e Y?xEvaluate “e” and
send it on output port X

Receive value from
input port Y and

assign it to variable “x”

x := e

send(X, e) recv(Y, x)chp-txt chp-txt

AVLSI

Overall hardware description
• A parallel collection of communicating hardware processes

❖ By default, no shared state

• Connections between processes via channels to exchange information
❖ (General shared variables possible; ignoring for this summer school!)

• For this summer school, syntax for connections, type declarations, etc. in the ACT language
❖ There are other examples of CSP-like languages (e.g. Occam)

AVLSI

Example: one-place buffer
• One-place buffer, initially empty

❖ Empty state

‣ Only operation that is valid: read next input

‣ Final state: full
❖ Full state

‣ Only operation that is valid: send value on output

‣ Final state: empty
❖ Empty state to empty state:

• Buffer repeats this forever:

Local state
in variable

x

Input port L Output port R

L?x

R!x

L?x; R!x

*[L?x; R!x]

forever {
 recv (L,x);
 send (R,x)
}

chp-txt

defproc buffer(chan?(int) L; chan!(int) R)  
{
 int x; // local state

 chp {
 *[L?x; R!x]
 }
}

AVLSI

Example: two input, one output process

defproc adder(chan?(int) A,B; chan!(int) O)  
{
 int x,y; // local state

 chp {
 *[A?x, B?y;
 O!(x+y)
]
 }
}

Local state
in

variables
x, y

Input port A
Output port O

Input port B

AVLSI

Synchronization operations are part of message-passing

• Communication actions synchronize different parallel processes
❖ Knowing where one process is in its local program can give you information about what other processes in the

system are doing.

*[A?x;B?y; O!(x+y)]

*[Ap!1] Local state
in

variables
x, y

Input port A
Output port O

Input port B
*[Bp!2]

*[Op?z]

AVLSI

Non-determinism induced by the environment
• Problem: two input ports A and B and one output Z

❖ Receive the “next input” from either A or B
❖ Send this value on the output Z

• We need some new syntax!
❖ Probe: “is there a communication pending on this port?”

• Use with care, and only when absolutely necessary

*[[| #A -> A?x
 [] #B -> B?x
 |];
 Z!x
]

