
AVLSI

Week 2: Gate-level design

AVLSI

Schedule

9:00 AM Recap of models; handshake protocols

9:50 AM break

10:00 AM Gates and gate-level simulation

10:25 AM break

10:30 AM Pipeline example

11:00 AM break

11:10 AM Syntax-directed translation to cells

12:15 PM Non-determinism

12:45 PM Q&A

1:00 PM End of Day 2

AVLSI

Recap of previous week: message-passing abstraction
defproc buffer(chan?(int) L; chan!(int) R)  
{
 int x; // local state

 chp {
 *[L?x; R!x]
 }
}

defproc gcd(chan?(int) X, Y; chan!(int) O)  
{
 int x, y; // local state

 chp {
 *[X?x, Y?y;
 *[x > y -> x := x - y
 [] y > x -> y := y - x
];
 O!x
]
 }
}

defproc alu(chan?(int<2>) cmd;
 chan?(int) X, Y; chan!(int) O)  
{
 int x, y; // local state
 int<2> c;

 chp {
 *[X?x, Y?y, cmd?c;
 [c=0 -> O!(x + y)
 []c=1 -> O!(x - y)
 []c=2 -> O!(x & y)
 []c=3 -> O!(x | y)
]
 }
}

CHP = Communicating Hardware Processes

AVLSI

Recap of previous week: dataflow abstraction
• Dataflow model of computation

‣ Tokens flowing through pipelines

‣ Each component operates in parallel

• Each dataflow component can be written as a CHP
program

AVLSI

From message-passing to signals
• Variables

❖ Integers can be implemented as an array of
signals (bool)

• What about channels?

defproc alu(chan?(int<2>) cmd;
 chan?(int) X, Y; chan!(int) O)  
{
 int x, y; // local state
 int<2> c;

 chp {
 *[X?x, Y?y, cmd?c;
 [c=0 -> O!(x + y)
 []c=1 -> O!(x - y)
 []c=2 -> O!(x & y)
 []c=3 -> O!(x | y)
]
 }
}

AVLSI

Channels

• Channels can be implemented in a number of
ways
❖ Each channel requires a set of wires
❖ Sender and receiver must follow a

communication protocol

[]

channel

signals / wires

AVLSI

Dataless channels: two-phase protocol

• Two-phase protocol
❖ Also called transition signaling protocol
❖ Two wires to implement channel
❖ Two signal changes (“phases”) in sequence

• One end of the channel initiates the communication
❖ Called the “active” end of the channel (other end is passive)

request

acknowledge

Either end of the channel
can initiate the communication!

AVLSI

Dataless channels: four-phase protocol

• Four-phase protocol
❖ Two wires to implement channel
❖ Four signal changes (“phases”) in sequence
❖ Sometimes called “return to zero” protocol

• One end of the channel initiates the communication
❖ Called the “active” end of the channel (other end is passive)

request

acknowledge

Either end of the channel
can initiate the communication!

AVLSI

Dataless channels: single track protocol

• Two-phase protocol
❖ One wire to implement channel
❖ Two signal changes (“phases”) in sequence

• One end of the channel initiates the communication
❖ Called the “active” end of the channel (other end is passive)

Either end of the channel
can initiate the communication!

AVLSI

Encoding data: bundled data communication

• Protocol on request/acknowledge protocol can be any of the ones seen earlier!
❖ Two wires (or one) for the control
❖ N data wires for N-bit data communication
❖ Timing requirement (“bundled data timing requirement”)

data

request

acknowledge

AVLSI

Encoding data: bundled data communication

• Protocol on request/acknowledge protocol can be any of the ones seen earlier!
❖ Two wires (or one) for the control
❖ N data wires for N-bit data communication
❖ Timing requirement (“bundled data timing requirement”)

data

request

acknowledge

AVLSI

Encoding data: delay-insensitive encoding

• Four-phase communication with dual-rail data encoding
❖ Two wires for one bit
❖ Four-phase handshake on (data 0, acknowledge) or (data 1, acknowledge)

data 1

data 0

acknowledge

AVLSI

Delay-insensitive encoding
• 1-of-N encoding

❖ N wires to send log(N) bits of information
❖ Common choices: N=2 or N=4

• k-of-N encoding
❖ Maximum value occurs for k = floor(N/2)

‣ Extra wires: ~ O(log (N))

‣ These are called Sperner codes

• Mix-and-match
❖ N/2 copies of a 1-of-4 code (2N wires for N bits)

AVLSI

How do I know that data has arrived?
• 1-of-N encoding

❖ OR gate

• k-of-N encoding
❖ … a bit more complicated!

• How do I check all bits have arrived?
❖ Check each individual code
❖ Combine checks using a completion tree

• Standard gate: C-element

Ca xb

a b x

0 0 0

0 1 hold state

1 0 hold state

1 1 1

C

C

C

C

d[0].t
d[0].f

d[1].t
d[1].f

d[2].t
d[2].f

d[3].t
d[3].f

d[7].t
d[7].f

d[6].t
d[6].f

C

C

C

d[5].t
d[5].f

d[4].t
d[4].f

AVLSI

Multi-bit delay-insensitive communication

• In this example, the “request” is embedded in the data encoding
❖ Data bits are valid is interpreted as a phase in the 2-phase/4-phase communication

‣ Replaces request going high (or acknowledge going high), for example

data 1

data 0

acknowledge

Replace with wire encoding!

AVLSI

Encoding data: two-phase delay-insensitive encoding

• Two popular approaches
❖ Toggle data wire to send the appropriate bit
❖ Four-state encoding (popularly called level-encoded dual rail or LEDR)

‣ One of the wires is the data bit

‣ The second wire is toggled when next data bit is unchanged

data 1

data 0

acknowledge

AVLSI

Channels in ACT
• Example

❖ Bundled-data four-phase channels
❖ Defined in the ACT standard library

defproc alu(chan?(int<2>) cmd;
 chan?(int) X, Y; chan!(int) O)  
{
 int x, y; // local state
 int<2> c;

 chp {
 *[X?x, Y?y, cmd?c;
 [c=0 -> O!(x + y)
 []c=1 -> O!(x - y)
 []c=2 -> O!(x & y)
 []c=3 -> O!(x | y)
]
 }
}

import std::channel;

/* This defines std::channel::bd<M>
 as an implementation of chan(int<M>)
*/

