Yale ENGINEERING

Week 2: Gate-level design

AVLS|

Schedule

Yale ENGINEERING

Recap of previous week: message-passing abstraction

defproc buffer(chan?(int) L; chan!(int) R)
{

int x; // local state
defproc alu(chan?(int<2>) cmd;

chp { chan?(1int) X, Y; chan!(int) 0O)
*[L?2x; R!x] {
1 int x, y; // local state
} int<2> Cy
defproc gcd(chan?(int) X, ¥Y; chan!(int) O) chp {
{ *[X?x, Y?y, cmd?c;

int x, y; // local state [c=0 -> 0! (x + V)

[]Je=1 => 0! (x - V)
chE { i i ']Jc=2 -> 0! (x & V)
[*X.x, Y?y; .]c=3 =-> 0! (x \ Y)
[X > Y > X = X - Y]
LIS = 28 == 37 85 37 = e }
17 }
Olx
]
} CHP = Communicating Hardware Processes

}

Yale ENGINEERING AVLSI

Recap of previous week: dataflow abstraction

« Dataflow model of computation

» Tokens flowing through pipelines

» Each component operates in parallel

« Each dataflow component can be written as a CHP
program

Yale ENGINEERING

From message-passing to signals

* Variables
% Integers can be implemented as an array of defproc alu(chan?(1int<2>) cmd;
signals (bool) chan?(int) X, Y; chan! (int) O)
{
int x, y; // local state
» What about channels? int<2> c;
chp {
*[X?x, Y?y, cmd?c;
[c=0 -> O!(x + V)
[]Je=1 -> Ol (x - Yy)
']c=2 -> 0! (x & V)
[]e=3 -> 0! (x | y)
]
}
}

Yale ENGINEERING AVLSI

Channels

channel

q

> Signals / wires

« Channels can be implemented in a number of —
ways

+ Each channel requires a set of wires

<+ Sender and receiver must follow a
communication protocol/

Yale ENGINEERING /_A_VLS [

Dataless channels: two-phase protocol

/ ‘ / \ request q
I’ L —

acknowledge

« Two-phase protocol

+ Also called transition signaling protocol

+ Two wires to implement channel Either end of the channel

+ Two signal changes (“phases”) in sequence can injtiate the communication!
« One end of the channel initiates the communication

+ Called the “active” end of the channel (other end is passive)

Yale ENGINEERING AVLSI

Dataless channels: four-phase protocol

/ | / ‘ \ request q
B —

acknowledge

* Four-phase protocol

<+ Two wires to implement channel

% Four signal changes (“phases”) in sequence Either end of the channel
%+ Sometimes called “return to zero” protocol can injtiate the communication!
 One end of the channel initiates the communication

+ Called the “active” end of the channel (other end is passive)

Yale ENGINEERING AVLSI

Dataless channels: single track protocol

4+—>
« Two-phase protocol
+ One wire to implement channel
+ Two signal changes (“phases”) in sequence Either end of the channe/
* One end of the channel initiates the communication can initiate the communication!

+ Called the “active” end of the channel (other end is passive)

Yale ENGINEERING AVLSI

Encoding data: bundled data communication

acknowledge

* Protocol on request/acknowledge protocol can be any of the ones seen earlier!
<+ Two wires (or one) for the control
<+ N data wires for N-bit data communication

+ Timing requirement (“bundled data timing requirement”)

Yale ENGINEERING AVLS I

Encoding data: bundled data communication

acknowledge

* Protocol on request/acknowledge protocol can be any of the ones seen earlier!
<+ Two wires (or one) for the control
<+ N data wires for N-bit data communication

+ Timing requirement (“bundled data timing requirement”)

Yale ENGINEERING AVLS I

Encoding data: delay-insensitive encoding

/7 \\ data 1

acknowledge

« Four-phase communication with dual-rail data encoding
< Two wires for one bit

+ Four-phase handshake on (data O, acknowledge) or (data 1, acknowledge)

Yale ENGINEERING AVLSI

Delay-insensitive encoding

« 1-of-N encoding
+ N wires to send log(N) bits of information

< Common choices: N=2 or N=4

« k-of-N encoding
+ Maximum value occurs for k = floor(N/2)

» Extra wires: ~ O(log (N))

» These are called Sperner codes

« Mix-and-match
+ N/2 copies of a 1-of-4 code (2N wires for N bits)

Yale ENGINEERING AVLSI

How do | khow that data has arrived?

* 1-0f-N encoding
+ OR gate

« k-of-N encoding

% ..a bit more complicated!

« How do | check all bits have arrived?

<+ Check each individual code

+ Combine checks using a completion tree

« Standard gate: C-element
()=
b

Yale ENGINEERING

0 0
0 hold state
1 hold state
1 1

Hh ot Hh

Y YVYVYVYVYVY Y

Hh ot Hh

(_I_

Hh

(_|_

AVLS|

Multi-bit delay-insensitive communication

Replace with wire encoding! .
/ \ ,/ k\ data 1

\ / \

acknowledge
—_—)

* In this example, the “request” is embedded in the data encoding
+ Data bits are valid is interpreted as a phase in the 2-phase/4-phase communication

» Replaces request going high (or acknowledge going high), for example

Yale ENGINEERING AVLSI

Encoding data: two-phase delay-insensitive encoding

data 1

acknowledge

« Two popular approaches
+ Toggle data wire to send the appropriate bit
+ Four-state encoding (popularly called level-encoded dual rail or LEDR)

» One of the wires is the data bit

» The second wire is toggled when next data bit is unchanged

Yale ENGINEERING AVLSI

Channels in ACT

« Example

+ Bundled-data four-phase channels defproc alu(chan?(int<2>) cmd;

% Defined in the ACT standard library chan?(int) X, Y; chan!(int) O)

{
int x, y; // local state

1nt<2> c;
import std::channel;

chp {
/* This defines std::channel: :bd<M> *[X?x, Y?y, cmd?c;
as an implementation of chan(int<M>) [c=0 -> O!(x + ¥)
* /]Je=1 -> 0! (x - vVy)
]Jc=2 -> 0! (x & Vy)
[Je=3 -> Ol(x | y)
]
}
}

Yale ENGINEERING AVLSI

