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A direct path from CHP to gates
• Goal: to provide a direct path from CHP to gates 
• “Syntax directed” 

❖ Translation uses the syntax of the CHP program to generate the circuit 
❖ Uses structural induction 

‣ Induction on the structure of the program 

‣ Translations for 

‣ Base case: assignment, communication, skip, expression evaluation 

‣ Induction: selections, loops, sequential composition, parallel composition 

• History 
❖ 1980s : multiple approaches developed 
❖ 1991 : Tangram language / Haste @ Handshake Solutions (Philips Research) 
❖ 1998 : Balsa, based on Tangram with extensions (U. Manchester)
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Key idea
• Use a communication channel to select a program for execution 
• Given a program “P”, we will implement the following 

• We execute “P” by simply executing 

• This is sometimes called “process decomposition” or “process call”

*[       // infinite loop
  [#C];  // wait for pending
  P;     // execute P  
  C?     // finish C
 ]

C!
PC
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• Channel “C” that controls the execution of a program

Wire implementation of channels

request

acknowledge

one execution

PC
C! P

C.r

C.a

channel
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P
C.r

C.a

channel

One execution: idle (waiting) state
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wait

C.r

C.a

time



AVLSI

P
C.r

C.a

channel

One execution: request execution
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One execution: running
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One execution: done
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One execution: respond to requester
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One execution: reset phase
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Variables
• Two operations 

❖ Write a value to the variable 

❖ Read the current value of the variable 

• The variable itself is “passive” 
❖ It waits for the environment to either write or read its value

varW R
W!value

R?x



AVLSI

Writing and reading a variable

data

request

acknowledge

W
rite

var

write
W.r
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W.d[N]

read
R.r

R.a

R.d[N]
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Writing and reading a variable

request
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Sending and receiving on a channel

recv

channel
X.r

X.a

X.d[N]

C.r C.a

send

channel
X.r

X.a

X.d[N]

C.r C.a

data

request

acknowledge

Send/recv



AVLSI

Expression evaluation

• Example of expression de-composition

R.r

R.a

R.d[N]

eval

expr

R.r

R.a

R.d[N]

eval

+
E1

E2
var

R.r

R.a

R.d[N]

read
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Assignment

R.r

R.a

R.d[N]

eval

expr var

write
W.r

W.a

W.d[N]xfer

C.r C.a
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Assignment
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Building blocks

skip
C.r

C.a

C.r

C.a



AVLSI

Building blocks

skip
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C.a
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Building blocks

skip
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C.a
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C.a
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Selections and loops

S1

S2

G1

G2
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t
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G R.t

Selection

 [  G1 -> S1
 [] G2 -> S2
 ]
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Selections and loops

S1
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Selection

 [  G1 -> S1
 [] G2 -> S2
 ]

Loop

*[  G1 -> S1
 [] G2 -> S2
 ]


