
AVLSI

Syntax-directed translation
Rajit Manohar

AVLSI

A direct path from CHP to gates
• Goal: to provide a direct path from CHP to gates
• “Syntax directed”

❖ Translation uses the syntax of the CHP program to generate the circuit
❖ Uses structural induction

‣ Induction on the structure of the program

‣ Translations for

‣ Base case: assignment, communication, skip, expression evaluation

‣ Induction: selections, loops, sequential composition, parallel composition

• History
❖ 1980s : multiple approaches developed
❖ 1991 : Tangram language / Haste @ Handshake Solutions (Philips Research)
❖ 1998 : Balsa, based on Tangram with extensions (U. Manchester)

AVLSI

Key idea
• Use a communication channel to select a program for execution
• Given a program “P”, we will implement the following

• We execute “P” by simply executing

• This is sometimes called “process decomposition” or “process call”

*[// infinite loop
 [#C]; // wait for pending
 P; // execute P  
 C? // finish C
]

C!
PC

AVLSI

• Channel “C” that controls the execution of a program

Wire implementation of channels

request

acknowledge

one execution

PC
C! P

C.r

C.a

channel

AVLSI

P
C.r

C.a

channel

One execution: idle (waiting) state

request

acknowledge

wait

C.r

C.a

time

AVLSI

P
C.r

C.a

channel

One execution: request execution

request

acknowledge

wait

C.r

C.a

time

AVLSI

P
C.r

C.a

channel

One execution: running

request

acknowledge

run

C.r

C.a

time

AVLSI

P
C.r

C.a

channel

One execution: done

request

acknowledge

done

C.r

C.a

time

AVLSI

P
C.r

C.a

channel

One execution: respond to requester

request

acknowledge

ack

C.r

C.a

time

AVLSI

P
C.r

C.a

channel

One execution: reset phase

request

acknowledge

reset

C.r

C.a

time

AVLSI

P
C.r

C.a

channel

One execution: reset phase

request

acknowledge

wait

C.r

C.a

time

AVLSI

Variables
• Two operations

❖ Write a value to the variable

❖ Read the current value of the variable

• The variable itself is “passive”
❖ It waits for the environment to either write or read its value

varW R
W!value

R?x

AVLSI

Writing and reading a variable

data

request

acknowledge

W
rite

var

write
W.r

W.a

W.d[N]

read
R.r

R.a

R.d[N]

AVLSI

Writing and reading a variable

request

acknowledge

data

R
ead

var

write
W.r

W.a

W.d[N]

read
R.r

R.a

R.d[N]

AVLSI

Sending and receiving on a channel

recv

channel
X.r

X.a

X.d[N]

C.r C.a

send

channel
X.r

X.a

X.d[N]

C.r C.a

data

request

acknowledge

Send/recv

AVLSI

Expression evaluation

• Example of expression de-composition

R.r

R.a

R.d[N]

eval

expr

R.r

R.a

R.d[N]

eval

+
E1

E2
var

R.r

R.a

R.d[N]

read

AVLSI

Assignment

R.r

R.a

R.d[N]

eval

expr var

write
W.r

W.a

W.d[N]xfer

C.r C.a

AVLSI

Assignment

R.r

R.a

R.d[N]

eval

expr var

write
W.r

W.a

W.d[N]

R.r

R.a

R.d[N]

eval

expr var

write
W.r

W.a

W.d[N]

C.r C.a

xfer

C.r C.a

AVLSI

Building blocks

skip
C.r

C.a

C.r

C.a

AVLSI

Building blocks

skip
C.r

C.a

C.r

C.a

S1;S2
C.r

C.a
S1

C.r

C.a
S1 S2

AVLSI

Building blocks

skip
C.r

C.a

C.r

C.a

S1;S2
C.r

C.a
S1

C.r

C.a
S1 S2

S1,S2
C.r

C.a

C.r

C.a
S1 S2C

AVLSI

Selections and loops

S1

S2

G1

G2

C.r

C.a

t
f

f

t

R.r

R.f

eval

G R.t

Selection

 [G1 -> S1
 [] G2 -> S2
]

AVLSI

Selections and loops

S1

S2

G1

G2

C.r

C.a

t
f

f

t

S1

S2

G1

G2

C.r

C.a

t
f

f

t

Selection

 [G1 -> S1
 [] G2 -> S2
]

Loop

*[G1 -> S1
 [] G2 -> S2
]

