Yale ENGINEERING

Syntax-directed translation

Rajit Manohar

AVLS|

A direct path from CHP to gates

« Goal:to provide a direct path from CHP to gates
« “Syntax directed”

+ Translation uses the syntax of the CHP program to generate the circuit
+ Uses structural induction
» Induction on the structure of the program
» Translations for
» Base case: assignment, communication, skip, expression evaluation
» Induction: selections, loops, sequential composition, parallel composition
* History

+ 1980s : multiple approaches developed

+ 1991: Tangram language / Haste (@ Handshake Solutions (Philips Research)

+ 1998 : Balsa, based on Tangram with extensions (U. Manchester)

Yale ENGINEERING AVLSI

Key idea

« Use a communication channel to select a program for execution

« Given a program “P”, we will implement the following

* [// infinite loop
[#C]; // wait for pending
P; // execute P
C? // finish C

]

« We execute “P” by simply executing

C!

* Thisis sometimes called “process decomposition” or “process call”

Yale ENGINEERING

AVLS!

Wire implementation of channels

« Channel “C” that controls the execution of a program

R request

one execution e

acknowledge

channel
C C.r
E— Cl
«
C.a

Yale ENGINEERING AVLS I

One execution: idle (waiting) state

\ / R ! request

acknowledge

time

channel ;

.. wait

Yale ENGINEERING AVLS I

One execution: request execution

\ / R ! request

acknowledge

time

channel ;

.. wait

Yale ENGINEERING AVLS I

One execution: running

\ / R ! request

acknowledge

time

channel

oo ruon

Yale ENGINEERING AVLS I

One execution: done

\ / R ! request

acknowledge

time
channel m
C.r
<
C.a

Yale ENGINEERING AVLS I

One execution: respond to requester

\ / R ! request

acknowledge

time

channel
C.r

ack

Yale ENGINEERING AVLS I

One execution: reset phase

\ / R ! request

acknowledge

time

channel
- . reset

Yale ENGINEERING AVLS I

One execution: reset phase

\ / il R ! request

acknowledge

time

channel ;

.. wait

Yale ENGINEERING AVLS I

Variables

* TWO operations

< Write a value to the variable W R

— | var

W!wvalue

<+ Read the current value of the variable

R?x

« The variable itself is “passive”

< |t waits for the environment to either write or read its value

Yale ENGINEERING AVLSI

Writing and reading a variable

write read
W.xr R.r
-
W.d[N] R.d[N
var L
< >
W.a R.a
\data
\ / R A request

acknowledge

Yale ENGINEERING AVLS!

Writing and reading a variable

write read
W.r R.r
<
W.d[N] R.d[N
var Ll
< >
W.a R.a
. K 1" \ A request
N / \ p \ // \\
\ / / \
\\ \ / \ /
\ /7 \\ / -
acknowledge
data '

Yale ENGINEERING AVLS!

Sending and receiving on a channel

C.r C.a C.r C.a
A A
channel channel
X.r X.r
>
X.d[N] X.d[N]
-
X.a X.a
\data
\ / R A request

AD3I1/pPUdS

acknowledge

Yale ENGINEERING AVLS I

Expression evaluation

Yale ENGINEERING AVLS I

Assignment

C.r C.a

Yale ENGINEERING AVLS I

Assignment

C.r C.a

Yale ENGINEERING AVLS I

Building blocks

Yale ENGINEERING AVLS I

Building blocks

Yale ENGINEERING AVL Sl

Building blocks

Yale ENGINEERING AV’.S!

Selections and loops

C.r
" C.a [G1 -> 51
[] G2 => 52
]
Selection

Yale ENGINEERING AVLSI

Selections and loops

C.r
" C.a [G1 -> 51
[] G2 -> S»
]
Selection
C.r
= C.a *[Gi1 -> 51
[] G2 -> S»
]
Loop

Yale ENGINEERING AVLSI

