
6

Asynchronous modules

Signaling protocol:
reqin+ start+ [computation] done+ reqout+ ackout+ ackin+
reqin- start- [reset] done- reqout- ackout- ackin-
(more concurrency is also possible)

Data IN Data OUT

req in req out
ack in ack out

DATA
PATH

CONTROL

start done

7

Data-path / Control

L L L Llogic logic logic

Rin Rout

CONTROL AinAout

8

Control specification

A+

B+

A-

B-

A

B

A input
B output

9

Control specification

A+

B+

A-

B-

A B

10

Control specification

A+

B-

A-

B+

A B

11

Control specification

A+

C-

A-

C+ A

C

B+

B- B

C

12

Control specification

A+

C-

A-

C+ A

C

B+

B-
B

C

13

Asynchronous latches: C element

C
A

B
Z

A B Z+

0 0 0
0 1 Z
1 0 Z
1 1 1

Vdd

Gnd

A

A

A

AB

B

B

B

Z

Z

Z

[van Berkel 91]

Static Logic
Implementation

Z=AB+(A+B)Z

14

Control specification

C
C

Ri
Ro

Ai

Ao

Ri+

Ao+

Ri-

Ao-

Ro+

Ai+

Ro-

Ai-

Ri Ro

Ao Ai

FIFO
cntrl

15

A simple filter: specification

y := 0;
loop

x := READ (IN);
WRITE (OUT, (x+y)/2);
y := x;

end loop

RinAin

AoutRout

IN

OUT

filter

16

A simple filter: block diagram

x y
+

controlRin
Ain

Rout
Aout

Rx Ax Ry Ay Ra Aa

IN
OUT

• x and y are level-sensitive latches (transparent when R=1)
• + is a bundled-data adder (matched delay between Ra and Aa)
• Rin indicates the validity of IN
• After Ain+ the environment is allowed to change IN
• (Rout,Aout) control a level-sensitive latch at the output

17

A simple filter: control spec.

x y
+

controlRin
Ain

Rout
Aout

Rx Ax Ry Ay Ra Aa

IN
OUT

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

Aa
+
Ra-

Aa-

Rout+

Aout+

Rout-

Aout-

18

A simple filter: control impl.

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

Aa+

Ra-

Aa-

Rout+

Aout+

Rout-

Aout-

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

19

Control: observable behavior

Rx+
Rin+

Ax+ Ra+ Aa+ Rout+ Aout+ z+ Rout- Aout- Ry+

Ry- Ay+Rx-Ax-Ay-

Ain-

Ain+

Ra-

Rin-

Aa-z-

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

z

20

Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Basic synthesis flow

x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x
y

z

xyz-example: Specification

21

x

y

z

x+

x-

y+

y-

z+

z-

Token flow

22

x+

x-

y+

y-

z+

z-

xyz
000

x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph

23

x z x y= ⋅ +()

y z x= +

Next-state functions
xyz
000

x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

24

z x y z= + ⋅

1) Truth Table 2) Boolean Minimization

Deriving next state functions

25

Previous
state

Next
State

0*0 0 1 0 0

1 0*0* 1 1 1

0 1*0 0 0 0

1 1 0* 1 1 1

0 0*1 0 1 1

1*0*1 0 1 1

0 1 1* 0 1 0

1*1 1 0 1 1

xy
z

00 10 11 01

0 1 1 1 0

1 0 0 0 0

x z x y= ⋅ +()

Observations in this example:
1) All combinations are used as states
2) All states appear uniquely
Generally, this is not always the case!

0

1

26

Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow

27

VME bus

Device
LDS

LDTACK

D
DSr

DSw

DTACK

VME Bus
Controller

Data
Transceiver

Bus DSr

LDS

LDTACK

D

DTACK

Read Cycle

28

STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller

29

Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-

30

Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

31

Circuit synthesis

Goal:
 Derive a hazard-free circuit

under a given delay model and
mode of operation

32

Speed independence

Delay model
 Unbounded gate / environment delays
 Certain wire delays shorter than certain paths in the

circuit

Conditions for implementability:
 Consistency
 Complete State Coding
 Persistency

33

Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow

34

STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller

35

Binary encoding of signals
DSr+

DSr+

DSr+

DTACK-

DTACK-

DTACK-

LDS-LDS-LDS-

LDTACK- LDTACK- LDTACK-

D-

DSr-DTACK+

D+

LDTACK+

LDS+

36

Binary encoding of signals
DSr+

DSr+

DSr+

DTACK-

DTACK-

DTACK-

LDS-LDS-LDS-

LDTACK- LDTACK- LDTACK-

D-

DSr-DTACK+

D+

LDTACK+

LDS+

10000

10010

10110 01110

01100

0011010110

(DSr , DTACK , LDTACK , LDS , D)

37

QR (LDS+)

QR (LDS-)

Excitation / Quiescent Regions
ER (LDS+)

ER (LDS-)

LDS-LDS-

LDS+

LDS-

38

Next-state function

0 → 1

LDS-LDS-

LDS+

LDS-

1 → 0

0 → 0

1 → 1

10110
10110

39

Karnaugh map for LDS

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

LDS = 0 LDS = 1

0 1-0

0 0 0 0 0 0/1?

1

111

-

-

-

- - - -

-

- ---

- - -

40

Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow

41

Concurrency reduction

LDS-LDS-

LDS+

LDS-

10110
10110

DSr+

DSr+

DSr+

42

Concurrency reduction

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

43

State encoding conflicts

LDS-

LDTACK-

LDTACK+

LDS+

10110
10110

44

Signal Insertion

LDS-

LDTACK-

D-

DSr-

LDTACK+

LDS+

CSC-

CSC+

101101

101100

45

Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow

46

Complex-gate implementation

)(csccsc

csc

csc

LDTACKDSr

LDTACKD

DDTACK

DLDS

+⋅=

⋅=

=

+=

47

Implementability conditions

Consistency
 Rising and falling transitions of each signal

alternate in any trace

Complete state coding (CSC)
 Next-state functions correctly defined

Persistency
 No event can be disabled by another event

(unless they are both inputs)

48

Implementability conditions

Consistency + CSC + persistency

There exists a speed-independent circuit
that implements the behavior of the STG

(under the assumption that any Boolean function
can be implemented with one complex gate)

49

Persistency
100 000 001a- c+

b+ b+

a
c

b

a

c

b
is this a pulse ?

Speed independence ⇒ glitch-free output behavior under any delay

50

Speed-independent
implementations

Implementability conditions
 Consistency
 Complete state coding
 Persistency

Circuit architectures
 Complex (hazard-free) gates
 C elements with monotonic covers
 ...

51

Specification
(STG)

State Graph

SG with
CSC

Decomposed
functions

Next-state
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow

52

y-

z- w-

y+ x+

z+

x-

w+

1001 1011

1000

1010

0001

0000 0101

0010 0100

0110 0111

0011

y-

y+

x-

x+
w+

w-

z+

z-

w-

w-

z-

z-y+

y+

x+

x+

Logic decomposition: example

53

yz=1yz=0

1001 1011

1000

1010

0001

0000 0101

0010 0100

0110 0111

0011

y-

y+

x-

x+
w+

w-

z+

z-

w-

w-

z-

z-y+

y+

x+

x+

1001 1011

1000

1010

0001

0000 0101

0010 0100

0110 0111

0011

y-

y+

x-

x+
w+

w-

z+

z-

w-

w-

z-

z-y+

y+

x+

x+

C

C

x
y

x

y

w

z

x
y
z

y
z

w

z
w

z

y

Logic decomposition: example

54

s-

s+

s-

s-

s=1

s=0

1001 1011

1000

1010

0111

0011
y+

x-

w+

z+

z-

0001

0000 0101

0010 0100

0110

x+

w-

w-

w-

z-

z-y+

y+

x+

x+

1001

1000

1010

y+

z-

0111

C

C

x
y

x

y

w

z

x

y
z

w

z
w

z

y

s
y-

Logic decomposition: example

55

y-

z- w-

y+ x+

z+

x-

w+

s-

s+

s-

s+

s-

s-

s=1

s=0

1001 1011

1000

1010

0111

0011
y+

x-

w+

z+

z-

0001

0000 0101

0010 0100

0110

x+

w-

w-

w-

z-

z-y+

y+

x+

x+

1001

1000

1010

y+

z-

0111

y-

Logic decomposition: example

56

Speed-independent Netlist

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr

LDS

LDTACK

csc
map

57

Adding timing assumptions

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr

LDS

LDTACK

csc
map

LDTACK- before DSr+

FAST

SLOW

58

Adding timing assumptions

DTACK D

DSr

LDS

LDTACK

csc
map

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDTACK- before DSr+

59

State space domain

LDTACK- before DSr+

LDTACK-

DSr+

60

State space domain

LDTACK- before DSr+

LDTACK-

DSr+

61

State space domain

LDTACK- before DSr+

LDTACK-

DSr+

Two more unreachable states

62

Boolean domain

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

LDS = 0 LDS = 1

0 1-0

0 0 0 0 0 0/1?

1

111

-

-

-

- - - -

-

- ---

- - -

63

Boolean domain

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

LDS = 0 LDS = 1

0 1-0

0 0 - 0 0 1

1

111

-

-

-

- - - -

-

- ---

- - -

One more DC vector for all signals One state conflict is removed

64

Netlist with one constraint

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr

LDS

LDTACK

csc
map

65

Netlist with one constraint

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr LDS

LDTACK

LDTACK- before DSr+
TIMING CONSTRAINT

66

Conclusions
STGs (which are Interpreted Petri nets) have a high
expressiveness power at a low level of granularity
(similar to FSMs for synchronous systems)
Synthesis from STGs is fully automated
Synthesis tools often suffer from the state explosion
problem (symbolic techniques and Petri net unfoldings
are used)
The theory of logic synthesis from STGs can be found in:

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev,
Logic Synthesis of Asynchronous Controllers and Interfaces,
Springer Verlag, 2002.

Application of Petri nets and
Asynchronous Design

to Analog-Mixed Signal Systems

67

Typically in continuous time and level
Can be represented by EM forces/fields, electric charge,
magnetic flux, voltage, current
In various applications can represent mechanical, chemical,
thermal etc. forms of information or energy
Dynamics can be represented in time and frequency domains
Typically separates signal flows between “data” and power
supply but does not always need to
Applications: sensing, measurement, signal processing,
control, power
Interfaces between digital and analog: analog elements inside
digital components, ADC and DACs, digital control of analog

Analog behaviour

68

Amplifiers:
 Operational amplifiers
 Low noise amplifiers
 Sense amplifiers

Current mirrors
Bandgap circuits
Delay elements
Oscillators
Transmission lines

Analog elements

69

Triggered by events (e.g. level-crossing)
Modelled by
 cause-effect relations
 token flow
 handshakes
 data-flow

Power-driven timing
Applications: interfacing, control, pipeline

Async (digital) behaviour

70

Do we need to divide the
world into analog and

digital?
Async helps us to remove or at least

lower the A-to-D and D-to-A walls

• Logic cell design:
– GasP

• Power supply:
– IR degradation,
– Drooping,
– Subthreshold

• Interconnect:
– Transmission line models,
– Cross-talk and noise

• Delay analysis and design:
– stray, inertial, pure delays

Areas for analog for async

72

Applying analog knowledge
has always helped in:
- Speeding circuits up,
- Reducing power,
- Improving reliability and

robustness

What about the other
direction:

Async for Analog?

• Analog and Mixed Signal (AMS) design
becomes more complex:

More functionality
Move to deep submicron after all!

 According to Andrew Talbot from Intel (2016)
“transistors are very fast switches, netlists are
huge, parasitics are phenomenally difficult to
estimate, passives don’t follow Moore’s law,
reliability is a brand new landscape”

Motivation for Async for Analog

74

• Efficient implementation of power converters is paramount
– Extending battery life for mobile gadgets
– Reducing energy bill for PCs and data centres (5% and

3% of global electricity production, respectively)
• Need for responsive and reliable control circuits – little

digital
– Millions of control decisions per second for years
– A wrong decision may permanently damage the circuit

(not as fuzzy as genetic circuits!)

Motivation: power electronics
context

75

Emergence of “little digital” electronics

• Analog and digital electronics are becoming more intertwined
• Analog domain becomes complex and needs digital control

76

Async ADC

77

ADC design

78

Asynchronous controller

79

Sensors using asynchronous
logic

80

Cap-to-digital
Conversion
(sensing)

Y. Xu et al,ICECS’16

Racer Circuit

Racer Circuit (Patented)

81

D. Sokolov et al, US Patent 10,581,435

Can we go further with
Async?

Where we can have a win-win situation!
To something bigger … such as

Power electronics
And show impact outside the ‘usual’ digital

scope’ ….

Example: Buck (DC-
DC) converter control

83

Example: Switched Capacitor (DC-DC)
Converter control

84

Example: Buck converter

Building asynchronous circuits in
Analog-Mixed Signal context
requires extending traditional
assumptions about speed-
independence …

85

If digital parts don’t use clock, they are normally
designed by hand and require massive simulations:
 E.g. analog designers cannot afford simulating

power converters from start-up; Instead they
force it into known state

 More specifically: 50 us of Spectre simulation
time takes approx. 10 hours using 8 CPU cores

 Hence they can only verify cherry-picked corners
of digital functionality

(from Dialog Semiconductor, 2016)

Analog design in digital context
is hard

86

Asynchronous design offers many advantages for
AMS control
Challenges:
 It requires behavioural capture and synthesis but

commercial EDA tools don’t support it
 Verification of asynchronous designs as part of

AMS
 How to provide non-invasiveness with existing

design practices – we need to work with SVA and
SPICE simulation traces

Towards Async Design for
Analog

87

Buck example

88

89

STG Specification of buck
controller

Synchronous design

90

Asynchronous design

91

Multiphase Buck: Sync Control

92

Multiphase Buck: Async Control

93

Source: D. Sokolov, V. Khomenko, A.
Mokhov, V. Dubikhin, D. Lloyd and A.
Yakovlev, "Automating the Design of
Asynchronous Logic Control for AMS
Electronics," in IEEE Transactions on
Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 5, pp.
952-965, May 2020, doi:
10.1109/TCAD.2019.2907905.

Simulation results: Comparison

94

Simulation results

95

A2A components

96

Analog-to-Async (A2A) elements:

A2A elements (cont.)

97

Wait01: Synchronize handshake with
the rising edge of hazardous input

Wait: Synchronize handshake with
the high level of hazardous input

The full list of A2A components can be found
here: https://workcraft.org/a2a/start

https://workcraft.org/a2a/start

Reaction time

98

Peak current

99

Inductor losses

100

Design Results

101

More reading

102

D. Sokolov, V. Khomenko, A. Mokhov, V. Dubikhin, D. Lloyd and A.
Yakovlev, "Automating the Design of Asynchronous Logic Control
for AMS Electronics," in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 5, pp. 952-
965, May 2020, doi: 10.1109/TCAD.2019.2907905.

and

https://workcraft.org/

https://workcraft.org/

	Petri net based Async Design �with
	The role of Petri nets in design process
	Outline
	Book, papers and synthesis tools
	SwItch to Petri nets Primer
	Asynchronous modules
	Data-path / Control
	Control specification
	Control specification
	Control specification
	Control specification
	Control specification
	Asynchronous latches: C element
	Control specification
	A simple filter: specification
	A simple filter: block diagram
	A simple filter: control spec.
	A simple filter: control impl.
	Control: observable behavior
	Basic synthesis flow
	xyz-example: Specification
	Token flow
	State graph
	Next-state functions
	Deriving next state functions
	Design flow
	VME bus
	STG for the READ cycle
	Choice: Read and Write cycles
	Choice: Read and Write cycles
	Circuit synthesis
	Speed independence
	Design flow
	STG for the READ cycle
	Binary encoding of signals
	Binary encoding of signals
	Excitation / Quiescent Regions
	Next-state function
	Karnaugh map for LDS
	Design flow
	Concurrency reduction
	Concurrency reduction
	State encoding conflicts
	Signal Insertion
	Design flow
	Complex-gate implementation
	Implementability conditions
	Implementability conditions
	Persistency
	Speed-independent implementations
	Design flow
	Logic decomposition: example
	Logic decomposition: example
	Logic decomposition: example
	Logic decomposition: example
	Speed-independent Netlist
	Adding timing assumptions
	Adding timing assumptions
	State space domain
	State space domain
	State space domain
	Boolean domain
	Boolean domain
	Netlist with one constraint
	Netlist with one constraint
	Conclusions
	Application of Petri nets and Asynchronous Design �to Analog-Mixed Signal Systems
	Analog behaviour
	Analog elements
	Async (digital) behaviour
	Question to think about: ��Do we need to divide the world into analog and digital?��
	Areas for analog for async
	What about the other direction:�Async for Analog?
	Motivation for Async for Analog
	Motivation: power electronics context
	Emergence of “little digital” electronics
	Async ADC
	ADC design
	Asynchronous controller
	Sensors using asynchronous logic
	Racer Circuit (Patented)
	Can we go further with Async?
	Example: Buck (DC-DC) converter control
	Example: Switched Capacitor (DC-DC) �Converter control
	Example: Buck converter
	Analog design in digital context is hard
	Towards Async Design for Analog
	Buck example
	STG Specification of buck controller
	Synchronous design
	Asynchronous design
	Multiphase Buck: Sync Control
	Multiphase Buck: Async Control
	Simulation results: Comparison
	Simulation results
	A2A components
	A2A elements (cont.)
	Reaction time
	Peak current
	Inductor losses
	Design Results
	More reading

