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Asynchronous modules

Signaling protocol:
reqin+ start+ [computation] done+ reqout+ ackout+ ackin+
reqin- start- [reset]        done- reqout- ackout- ackin-
(more concurrency is also possible)

Data IN Data OUT

req in req out
ack in ack out

DATA
PATH

CONTROL

start done
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Data-path / Control

L L L Llogic logic logic

Rin Rout

CONTROL AinAout
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Control specification

A+

B+

A-

B-

A

B

A input
B output
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Control specification

A+

B+

A-

B-

A B
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Control specification

A+

B-

A-

B+

A B
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Control specification

A+

C-

A-

C+ A

C

B+

B- B

C
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Control specification

A+

C-

A-

C+ A

C

B+

B-
B

C
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Asynchronous latches: C element

C
A

B
Z

A     B     Z+

0      0      0
0      1      Z
1      0      Z
1      1      1

Vdd

Gnd

A

A

A

AB

B

B

B

Z

Z

Z

[van Berkel 91]

Static Logic 
Implementation

Z=AB+(A+B)Z
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Control specification

C
C

Ri
Ro

Ai

Ao

Ri+

Ao+

Ri-

Ao-

Ro+

Ai+

Ro-

Ai-

Ri Ro

Ao Ai

FIFO
cntrl
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A simple filter: specification

y := 0;
loop

x := READ (IN);
WRITE (OUT, (x+y)/2);
y := x;

end loop

RinAin

AoutRout

IN

OUT

filter
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A simple filter: block diagram

x y
+

controlRin
Ain

Rout
Aout

Rx Ax Ry Ay Ra Aa

IN
OUT

• x and y are level-sensitive latches (transparent when R=1)
• + is a bundled-data adder (matched delay between Ra and Aa)
• Rin indicates the validity of IN
• After  Ain+ the environment is allowed to change IN
• (Rout,Aout) control a level-sensitive latch at the output
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A simple filter: control spec.

x y
+

controlRin
Ain

Rout
Aout

Rx Ax Ry Ay Ra Aa

IN
OUT

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

Aa
+
Ra-

Aa-

Rout+

Aout+

Rout-

Aout-
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A simple filter: control impl.

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

Aa+

Ra-

Aa-

Rout+

Aout+

Rout-

Aout-

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout
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Control: observable behavior

Rx+
Rin+

Ax+ Ra+ Aa+ Rout+ Aout+ z+ Rout- Aout- Ry+

Ry- Ay+Rx-Ax-Ay-

Ain-

Ain+

Ra-

Rin-

Aa-z-

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

z
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Specification
(STG)

State Graph

SG with
CSC

Next-state 
functions

Decomposed 
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Basic synthesis flow



x

y

z

x+

x-

y+

y-

z+

z-

Signal Transition Graph (STG)

x
y

z

xyz-example: Specification
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x

y

z

x+

x-

y+

y-

z+

z-

Token flow
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x+

x-

y+

y-

z+

z-

xyz
000

x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-

State graph
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x z x y= ⋅ +( )

y z x= +

Next-state functions
xyz
000

x+

100
y+z+

z+y+

101 110

111

x-

x-

001

011
y+

z-

010

y-
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z x y z= + ⋅



1) Truth Table 2) Boolean Minimization

Deriving next state functions
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Previous 
state

Next 
State

0*0 0 1 0 0

1 0*0* 1 1 1

0 1*0 0 0 0

1 1 0* 1 1 1

0 0*1 0 1 1

1*0*1 0 1 1

0 1 1* 0 1 0

1*1 1 0 1 1

xy
z

00 10 11 01

0 1 1 1 0

1 0 0 0 0

x z x y= ⋅ +( )

Observations  in this example:
1) All combinations are used as states
2) All states appear uniquely
Generally, this is not always the case!

0

1
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Specification
(STG)

State Graph

SG with
CSC

Next-state 
functions

Decomposed 
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow
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VME bus

Device
LDS

LDTACK

D
DSr

DSw

DTACK

VME Bus
Controller

Data
Transceiver

Bus DSr

LDS

LDTACK

D

DTACK

Read Cycle
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STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller
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Choice: Read and Write cycles

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

DTACK-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-

DTACK-

LDS-

LDTACK-
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Choice: Read and Write cycles

DTACK-

DSr+

LDS+

LDTACK+

D+

DTACK+

DSr-

D-

LDS-

LDTACK-

DSw+

D+

LDS+

LDTACK+

D-

DTACK+

DSw-
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Circuit synthesis

Goal:
 Derive a hazard-free circuit

under a given delay model and
mode of operation
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Speed independence

Delay model
 Unbounded gate / environment delays
 Certain wire delays shorter than certain paths in the 

circuit

Conditions for implementability:
 Consistency
 Complete State Coding
 Persistency
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Specification
(STG)

State Graph

SG with
CSC

Next-state 
functions

Decomposed 
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow
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STG for the READ cycle

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDS

LDTACK

D

DSr

DTACK

VME Bus
Controller
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Binary encoding of signals
DSr+

DSr+

DSr+

DTACK-

DTACK-

DTACK-

LDS-LDS-LDS-

LDTACK- LDTACK- LDTACK-

D-

DSr-DTACK+

D+

LDTACK+

LDS+
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Binary encoding of signals
DSr+

DSr+

DSr+

DTACK-

DTACK-

DTACK-

LDS-LDS-LDS-

LDTACK- LDTACK- LDTACK-

D-

DSr-DTACK+

D+

LDTACK+

LDS+

10000

10010

10110 01110

01100

0011010110

(DSr , DTACK , LDTACK , LDS , D)
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QR (LDS+)

QR (LDS-)

Excitation / Quiescent Regions
ER (LDS+)

ER (LDS-)

LDS-LDS-

LDS+

LDS-
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Next-state function

0 → 1

LDS-LDS-

LDS+

LDS-

1 → 0

0 → 0

1 → 1

10110
10110
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Karnaugh map for LDS

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

LDS = 0 LDS = 1

0 1-0

0 0 0 0 0 0/1?

1

111

-

-

-

---

- - - -

-

- ---

- - -
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Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed 
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow
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Concurrency reduction

LDS-LDS-

LDS+

LDS-

10110
10110

DSr+

DSr+

DSr+
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Concurrency reduction

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+
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State encoding conflicts

LDS-

LDTACK-

LDTACK+

LDS+

10110
10110
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Signal Insertion

LDS-

LDTACK-

D-

DSr-

LDTACK+

LDS+

CSC-

CSC+

101101

101100
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Specification
(STG)

State Graph

SG with
CSC

Next-state
functions

Decomposed 
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow
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Complex-gate implementation

)(csccsc

csc

csc

LDTACKDSr

LDTACKD

DDTACK

DLDS

+⋅=

⋅=

=

+=
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Implementability conditions

Consistency
 Rising and falling transitions of each signal 

alternate in any trace

Complete state coding (CSC)
 Next-state functions correctly defined

Persistency
 No event can be disabled by another event 

(unless they are both inputs)
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Implementability conditions

Consistency + CSC + persistency

There exists a speed-independent circuit
that implements the behavior of the STG

(under the assumption that any Boolean function
can be implemented with one complex gate)
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Persistency
100 000 001a- c+

b+ b+

a
c

b

a

c

b
is this a pulse ?

Speed independence ⇒ glitch-free output behavior under any delay



50

Speed-independent 
implementations

Implementability conditions
 Consistency
 Complete state coding
 Persistency

Circuit architectures
 Complex (hazard-free) gates
 C elements with monotonic covers
 ...
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Specification
(STG)

State Graph

SG with
CSC

Decomposed 
functions

Next-state 
functions

Gate netlist

Reachability analysis

State encoding

Boolean minimization

Logic decomposition

Technology mapping

Design flow
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y-

z- w-

y+ x+

z+

x-

w+

1001 1011

1000

1010

0001

0000 0101

0010 0100

0110 0111

0011

y-

y+

x-

x+
w+

w-

z+

z-

w-

w-

z-

z-y+

y+

x+

x+

Logic decomposition: example
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yz=1yz=0

1001 1011

1000

1010

0001

0000 0101

0010 0100

0110 0111

0011

y-

y+

x-

x+
w+

w-

z+

z-

w-

w-

z-

z-y+

y+

x+

x+

1001 1011
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1010

0001

0000 0101

0010 0100

0110 0111

0011
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y+

x-

x+
w+
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w-
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z-
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y+

x+

x+

C

C

x
y

x

y

w
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y
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z

w

z
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z
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Logic decomposition: example
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s-

s+

s-

s-

s=1

s=0

1001 1011

1000

1010

0111

0011
y+

x-

w+

z+

z-

0001

0000 0101

0010 0100

0110

x+

w-

w-

w-

z-

z-y+

y+

x+

x+

1001

1000

1010

y+
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0111
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x
y

x

y
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z

x

y
z

w

z
w

z

y

s
y-

Logic decomposition: example
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y-

z- w-

y+ x+

z+

x-

w+

s-

s+

s-

s+

s-

s-

s=1

s=0

1001 1011

1000

1010

0111

0011
y+

x-

w+

z+

z-

0001

0000 0101

0010 0100

0110

x+

w-

w-

w-

z-

z-y+

y+

x+

x+

1001

1000

1010

y+

z-

0111

y-

Logic decomposition: example
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Speed-independent Netlist

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr

LDS

LDTACK

csc
map
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Adding timing assumptions 

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr

LDS

LDTACK

csc
map

LDTACK- before DSr+

FAST

SLOW
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Adding timing assumptions

DTACK D

DSr

LDS

LDTACK

csc
map

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

LDTACK- before DSr+
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State space domain

LDTACK- before DSr+

LDTACK-

DSr+
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State space domain

LDTACK- before DSr+

LDTACK-

DSr+
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State space domain

LDTACK- before DSr+

LDTACK-

DSr+

Two more unreachable states
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Boolean domain

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

LDS = 0 LDS = 1

0 1-0

0 0 0 0 0 0/1?

1

111

-

-

-

---

- - - -

-

- ---

- - -
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Boolean domain

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

DTACK
DSrD

LDTACK 00 01 11 10

00

01

11

10

LDS = 0 LDS = 1

0 1-0

0 0 - 0 0 1

1

111

-

-

-

---

- - - -

-

- ---

- - -

One more DC vector for all signals One state conflict is removed
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Netlist with one constraint

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr

LDS

LDTACK

csc
map
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Netlist with one constraint

LDS+ LDTACK+ D+ DTACK+ DSr- D-

DTACK-

LDS-LDTACK-

DSr+

DTACK D

DSr LDS

LDTACK

LDTACK- before DSr+
TIMING CONSTRAINT
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Conclusions
STGs (which are Interpreted Petri nets) have a high 
expressiveness power at a low level of granularity 
(similar to FSMs for synchronous systems)
Synthesis from STGs is fully automated
Synthesis tools often suffer from the state explosion 
problem (symbolic techniques and Petri net unfoldings
are used)
The theory of logic synthesis from STGs can be found in:

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovlev,
Logic Synthesis of Asynchronous Controllers and Interfaces,
Springer Verlag, 2002.



Application of Petri nets and 
Asynchronous Design 

to Analog-Mixed Signal Systems

67



Typically in continuous time and level
Can be represented by EM forces/fields, electric charge, 
magnetic flux, voltage, current
In various applications can represent mechanical, chemical, 
thermal etc. forms of information or energy
Dynamics can be represented in time and frequency domains
Typically separates signal flows between “data” and power 
supply but does not always need to 
Applications: sensing, measurement, signal processing, 
control, power
Interfaces between digital and analog: analog elements inside 
digital components, ADC and DACs, digital control of analog

Analog behaviour
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Amplifiers:
 Operational amplifiers
 Low noise amplifiers
 Sense amplifiers

Current mirrors
Bandgap circuits
Delay elements
Oscillators
Transmission lines

Analog elements
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Triggered by events (e.g. level-crossing) 
Modelled by 
 cause-effect relations
 token flow
 handshakes
 data-flow  

Power-driven timing
Applications: interfacing, control, pipeline 

Async (digital) behaviour
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Do we need to divide the 
world into analog and 

digital?
Async helps us to remove or at least 

lower the A-to-D and D-to-A walls



• Logic cell design:
– GasP

• Power supply: 
– IR degradation, 
– Drooping, 
– Subthreshold

• Interconnect: 
– Transmission line models, 
– Cross-talk and noise 

• Delay analysis and design:
– stray, inertial, pure delays

Areas for analog for async
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Applying analog knowledge 
has always helped in:
- Speeding circuits up, 
- Reducing power, 
- Improving reliability and 

robustness 



What about the other 
direction:

Async for Analog?



• Analog and Mixed Signal (AMS) design 
becomes more complex:

More functionality
Move to deep submicron after all!

 According to Andrew Talbot from Intel (2016) 
“transistors are very fast switches, netlists are 
huge, parasitics are phenomenally difficult to 
estimate, passives don’t follow Moore’s law, 
reliability is a brand new landscape”

Motivation for Async for Analog

74



• Efficient implementation of power converters is paramount
– Extending battery life for mobile gadgets
– Reducing energy bill for PCs and data centres (5% and 

3% of global electricity production, respectively)
• Need for responsive and reliable control circuits – little 

digital
– Millions of control decisions per second for years
– A wrong decision may permanently damage the circuit 

(not as fuzzy as genetic circuits!)

Motivation: power electronics 
context
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Emergence of “little digital” electronics

• Analog and digital electronics are becoming more intertwined
• Analog domain becomes complex and needs digital control
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Async ADC
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ADC design
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Asynchronous controller
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Sensors using asynchronous 
logic
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Cap-to-digital
Conversion 
(sensing)

Y. Xu et al,ICECS’16

Racer Circuit



Racer Circuit (Patented)
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D. Sokolov et al, US Patent 10,581,435



Can we go further with 
Async?

Where we can have a win-win situation!
To something bigger … such as

Power electronics
And show impact outside the ‘usual’ digital 

scope’ ….



Example: Buck (DC-
DC) converter control
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Example: Switched Capacitor (DC-DC) 
Converter control

84



Example: Buck converter

Building asynchronous circuits in 
Analog-Mixed Signal context 
requires extending traditional  
assumptions about speed-
independence …
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If digital parts don’t use clock, they are normally 
designed by hand and require massive simulations:
 E.g. analog designers cannot afford simulating 

power converters from start-up; Instead they 
force it into known state

 More specifically: 50 us of Spectre simulation 
time takes approx. 10 hours using 8 CPU cores

 Hence they can only verify cherry-picked corners 
of digital functionality

(from Dialog Semiconductor, 2016)

Analog design in digital context 
is hard 
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Asynchronous design offers many advantages for 
AMS control
Challenges: 
 It requires behavioural capture and synthesis but 

commercial EDA tools don’t support it
 Verification of asynchronous designs as part of 

AMS 
 How to provide non-invasiveness with existing 

design practices – we need to work with SVA and 
SPICE simulation traces

Towards Async Design for 
Analog
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Buck example

88



89

STG Specification of buck 
controller



Synchronous design

90



Asynchronous design
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Multiphase Buck: Sync Control
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Multiphase Buck: Async Control
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Source: D. Sokolov, V. Khomenko, A. 
Mokhov, V. Dubikhin, D. Lloyd and A. 
Yakovlev, "Automating the Design of 
Asynchronous Logic Control for AMS 
Electronics," in IEEE Transactions on 
Computer-Aided Design of Integrated 
Circuits and Systems, vol. 39, no. 5, pp. 
952-965, May 2020, doi: 
10.1109/TCAD.2019.2907905.



Simulation results: Comparison
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Simulation results
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A2A components

96

Analog-to-Async (A2A) elements: 



A2A elements (cont.)
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Wait01: Synchronize handshake with 
the rising edge of hazardous input

Wait: Synchronize handshake with 
the high level of hazardous input

The full list of A2A components  can be found 
here: https://workcraft.org/a2a/start

https://workcraft.org/a2a/start


Reaction time
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Peak current

99



Inductor losses

100



Design Results

101



More reading

102

D. Sokolov, V. Khomenko, A. Mokhov, V. Dubikhin, D. Lloyd and A. 
Yakovlev, "Automating the Design of Asynchronous Logic Control 
for AMS Electronics," in IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 39, no. 5, pp. 952-
965, May 2020, doi: 10.1109/TCAD.2019.2907905.

and 

https://workcraft.org/

https://workcraft.org/
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