Asynchronous modules

Data IN::>

DATA

start done

reqin

ackin

CONTROL

« Signaling protocol:

req out
ack out

reqin+ start+ [computation] done+ reqout+ ackout+ ackin+

reqin- start- [reset]

(more concurrency is also possible)

done- reqout- ackout- ackin-

Data-path / Control

Control specification

L

|

Control specification

Control specification

>

Control specification

L
e

:

e/ . e
A/

Control specification

B

@ ¢ @

o

13

Asynchronous latches: C element

A B |Z'
0O 0] 0
0O 1 | Z
1 0| Z
|

7Z=AB+(A+B)Z

Vdd
A—4 B—4
L
b
Z
B —4 A4
— I >o0—Z
B — . A—
IJ—‘| Static Logic
Implementation
A— B—

[van Berkel 91]

Gnd

Control specification

Ro+ \
—| FIF0 [F° Ao* /
. cntrl | \ CF
/

Ro-

J
- _‘— 3.1——»R0
-

14

15

A simple filter: specification

N
Ain Rin I

mll
loop
x := READ (IN); -
WRITE (OUT, (x+)/2): filter
y=x;

end loop I l iL

Aout Rout OuT

A simple filter: block diagram

+ ouUT
N X y

r RITa R[TA, R[TA,

in =— b U

A — control ol A:u:

* x and y are level-sensitive latches (transparent when R=1)

* + is a bundled-data adder (matched delay between R, and A,)
* R;, indicates the validity of IN

- After A, + the environment is allowed to change IN

* (R,,6A,.:) control a level-sensitive latch at the output

16

A simple filter: control spec.

+ ouUT
I X y

R- _»R)J le Ry] lAy Ra] l Aa
e control . tout
A, A

r?f Vards
xk LT A\LT L

17

A simple filter: control impl.
"'?‘X Ay Ry I';laAa

-)

——
)

ﬁ/ﬁ
——

ConRterI obs;.\yegvable behavior

() A
Ain @
_ L OD_ Rout

19

Basic synthesis flow

Specification

(STG)
Reachability analysis
State Graph

State encoding

SG with
CSC

Boolean minimization

Next-state
functions

Logic decomposition

Decomposed
functions

Technology mapping

Gate netlist

20

Xyz-example: Specification

y ——< "

z+ X-

X+ y+ zZ-

y_

Signal Transition Graph (STG)

Next-state functions

x=z-(x+Yy

| I
g

Xyz

> 000

b
‘”/OOVf
101 110

7 N\ -

001 111

N

011

lz_

010

Deriving next state functions

1) Truth Table 2) Boolean Minimization

Previous | Next
state State

Observations in this example:

Design flow

Specification
(STG)
Reachability analysis
State Graph

State encoding

SG with
CSC

Boolean minimization

Next-state
functions

Logic decomposition

Decomposed
functions

Technology mapping

Gate netlist

26

Bus Data

Transceiver

VME Bus
Controller

VVME bus

Device

ﬁ// ___//7
&/ ____/
LDTACK / “\\—
D X

DTACK /[_\\

Read Cycle

27

S TG for the READ cycle

8y

VVVVVV
oooooooooo

Choice: Read and Write cycles

f DSr+ DSw+
LD! D+ ‘\\\\\

LDTACK+ = . LDS+

DTACK- D+ LDTACK- LDTACK- LDTACK+ DTACK-

DTACK+ D-

DSr- LDS- LDS- . DTACK+

[;- J k DS"W- 29

Choice: Read and Write cycles

30

Circuit synthesis

« Goal:

= Derive a hazard-free circuit
under a given delay model and
mode of operation

31

Speed Independence

* [Delay model
« Unbounded gate / environment delays

« Certain wire delays shorter than certain paths in the
circuit

* Conditions for implementability:
« Consistency
« Complete State Coding
= Persistency

32

Design flow

Specification

(STG)
Reachability analysis
State Graph

State encoding

SG with
CSC

Boolean minimization

Next-state
functions

Logic decomposition

Decomposed
functions

Technology mapping

Gate netlist

33

S TG for the READ cycle

Binary encoding of signals

055
B o e |

- ; B aad INSE
RET

Binary encoding of signals

LDTACK+

m :

D+

n DSr+ ® DTACK-

LDTACK-

LDTACK- LDTACK-
DSr+

LDS- LDS-
DSr+

DTACK-
=

LDS-

s

DTACK+

(DSr, DTACK, LDTACK, LDS, D)

36

EXxcitation / Quiescent Regions

QR (LDS+)

ER (LDS+)

LDS+

.A
> T
4 A

LDS-

LDS-

<
<
[
L

QR (LDS-)

LDS-

ER (LDS-)

37

Next-state function

01 “ ; . .A 4
LDS | |
/ 050
1 N 1 LDS- LDS- LDS-

150

10110 2 Bt o -
10110 /

38

Karnaugh map for LDS
s=0 bs=1

DTACK DTACK
D DS 2 DSr
(00 Of 11" A0 N 00 o1 AT 10
oo 0| 0| - | 1 T = |- | =--] 1
01 B - - - 01 . b - -
M| = | = | - - 1y = | 1 (
10/0 0| -10 10l 0|0 0/1?

39

Design flow

Specification

(STG)
Reachability analysis
State Graph

State encoding

SG with
CSC

Boolean minimization

Next-state

functions
Logic decomposition

Decomposed
functions

Technology mapping

Gate netlist

40

Concurrency reduction

DSr+

LDS+
DSr+

LDS- LDS- LDS-

.A
<
A

'7

10110 @ b A——

10110 /

Concurrency reduction

K DSr+ 4’ DTACK- q.j

LDS+ —» LDTACK+ ——» D+ —t» DTACK+ —» DSr- —» D-

\ LDTACK- <« e LDS- 42

42

State encoding conflicts

y LDTACK-

LDTACK+ LDS-

.A
<
A

A 4

10110 @ ®-

10110 /

Signal Insertion

IIIIII < ‘.A
= <
A

D ———

LDS+ LDTACK-

LDTACK+ LDS-

\ 4
. .A
<

>

44

Design flow

Specification

(STG)
Reachability analysis
State Graph

State encoding
SG with

CSC

Boolean minimization

Next-state
functions

Logic decomposition

Decomposed
functions

Technology mapping
Gate netlist

45

Complex-gate implementation

LDS = D + csc
DTACK =D
D=LDTACK -csc

csc = DSr - (csc+ LDTACK)

46

Implementability conditions

« Consistency

« RiIsing and falling transitions of each signal
alternate in any trace

« Complete state coding (CSC)
= Next-state functions correctly defined

« Persistency

= No event can be disabled by another event
(unless they are both inputs)

47

Implementability conditions

* Consistency + CSC + persistency

!

* There exists a speed-independent circuit
that implements the behavior of the STG

(under the assumption that any Boolean function
can be implemented with one complex gate)

48

Persistency.

100 —%— 000 —<— 001 G:D_b
| I ¢
a _
¢ e

‘x, 1s this a pulse ?

Speed independence = glitch-free output behavior under any delay

49

Speed-independent
Implementations

« Implementability conditions
= Consistency
=« Complete state coding
= Persistency

« Circuit architectures
= Complex (hazard-free) gates
= C elements with monotonic covers

50

Design flow

Specification

(STG)
Reachability analysis
State Graph

State encoding

SG with
CSC

Boolean minimization

Next-state

functions
Logic decomposition

Decomposed
functions

Technology mapping
Gate netlist

51

Logic decomposition: example

1007 - L 1011 Y-
g

+ 1000 0001~ w

e 7 -

- - -

1010 0000 0101 0011 € py L
N 4 “ | | ‘
0010 N 0100 X~ y+ X+ X-

<’ /
Ol ——="——. 0111 \//
Z+

52

Logic decomposition: example

= X
; 1D
y =

Logic decomposition: example

P
. D
PO

Logic decomposition: example

A
R

Speed-independent Netlist

’/’ DSr+ <

DTACK- ﬁ

LDS+ —» LDTACK+ —» D+ —» DTACK+ —» DSr- — D-

K LDTACK- «— LDS- J

e
|

- -

v U

_ e

56

Adding timing assumptions

’/’ DSr+ <

DTACK- ﬁ

LDS+ —» LDTACK+ —» D+ —» DTACK+ —» DSr- — D-

_

LDTACK- «— LDS- J

LDTACK- before DSr+

e
|

- -

_ e

v U

57

Adding timing assumptions

’/’ DSr+ < DTACK- ﬁ

LDS+ —» LDTACK+ ——» D+ —» DTACK+ —» DSr- — D-

LDTACK- «— LDS- 42
P LDTACK- before DSr+
—

— [P- »—

v U

58

State space domain

LDTACK- bef%

DSr+

LDTACK-

7

59

State space domain

DSr+
LDTACK- bef%

F

LDTACK-

7

60

State space domain

DSr+
LDTACK- bef%

LDTACK-

P
<«

[

»

Two more unreachable states

61

DTACK

D
LDTACK

00

01

11

10

DSr
0]0

Boolean domain

LDS =0

D DSr

01 11 10

0

-] - 01 - - -

E - = 11 . 1 1

LDS = 1
DTACK

0 o1 4T 10

o0l = | = | = |\

1

- 0/17?

62

Boolean domain

LDS = 0 LDS = 1
DTACK DTACK

D DS = DSr

Do\ 00 01 11 10 RN D0 _ O _1f 10
ol 0! 0 00| = 1
01| _ . 01| - .
M| = . M| = 1
10 0 0 10

One more DC vector for all signals

One state conflict is removed

63

Netlist with one constraint

’/’ BITR A

DTACK- ﬁ

LDS+ —» LDTACK+ ——» D+ —» DTACK+ —» DSr- — D-

LDTACK- «— LDS- J

e
|

»

-

e

»

64

Netlist with one constraint

’/ DSr+ < DTACK- \

LDS+ —» LDTACK+ —» D+ —» DTACK+ —» DSr- — D-

LDTACK- «— LDS- 42

TIMING CONSTRAINT
LDTACK- before DSr+

o
N

—
‘—_/

-

65

Conclusions

ST Gs (which are Interpreted Petri nets) have a high
expressiveness power at a low level of granularity
(similar to FSMs for synchronous systems)

Synthesis from STGs is fully automated

Synthesis tools often suffer from the state explosion
problem (symbolic technigues and Petri net unfoldings
are used)

The theory of logic synthesis from STGs can be found in:

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. Yakovleyv,
Logic Synthesis of Asynchronous Controllers and Interfaces,
Springer Verlag, 2002.

66

Application of Petri nets and
Asynchronous Design
to Analog-Mixed Signhal Systems

67

Analog pbehaviour

Typically in continuous time and level

Can be represented by EM forces/fields, electric charge,
magnetic flux, voltage, current

In'various applications can represent mechanical, chemical,
thermal etc. forms of information or. energy

Dynamics can be represented in time and frequency domains

Typically separates signal flows between “data” and power
supply but does not always need to

Applications: sensing, measurement, signal processing,
control, power

Interfaces between digital and analog: analog elements inside
digital components, ADC and DACs, digital control of analog

&

L

L

L

L

Analoeg elements

Amplifiers:

=« Operational amplifiers
= Low noise amplifiers

= Sense amplifiers
Current mirrors
Bandgap circuits

Delay elements
Oscillators
Transmission lines

Async (digital) behaviour

« Triggered by events (e.g. level-crossing)
« Modelled by

= cause-effect relations
= token flow
= handshakes
« data-flow
« Power-driven timing
« Applications: interfacing, control, pipeline

Do we need to divide the
world into analog and
digital?

Async helps us to remove or at least
lower the A-to-D and D-to-A walls

Areas for analog for async

Logic cell design: _
_ GasP Applying analog knowledge

has always helped In:

Power supply: - Speeding circuits up,

- IR degradation, - Reducing power,

- Drooping, - Improving reliability and
_ Subthreshold robustness
Interconnect:

~ Transmission line models,
- Cross-talk and noise
Delay analysis and design:

- stray, inertial, pure delays

VWhat about the other
direction:
Async for Analog?

Motivation for Async for Analog

. Analog and Mixed Signal (AMS) design
becomes more complex:

« More functionality
* Move to deep submicron after all!

= According to Andrew Talbot from Intel (2016)
‘transistors are very fast switches, netlists are
huge, parasitics are phenomenally difficult to
estimate, passives don't follow Moore’s law,
reliability is a brand new landscape”

Vietivation: power electronics
context

 Efficient implementation of power converters is paramount
- Extending battery life for mobile gadgets

- Reducing energy bill for PCs and data centres (5% and
3% of global electricity production, respectively)

* Need for responsive and reliable control circuits — little
digital
- Millions of control decisions per second for years

- A wrong decision may permanently damage the circuit
(not as fuzzy as genetic circuits!)

Emergence of little digital” electronics

|P cores (big digital)

— —— =\ level shifters)= — —

power
conve rte rs

sensor/tlmlng/energy '
infrastructure

' sanitisers

control for analog layer (little digital) _scope for
design automation

« Analog and digital electronics are becoming more intertwined
* Analog domain becomes complex and needs digital control

Async ADC

e Synchronous

e Asynchronous

A. Ogweno, P. Degenaar, V. Khomenko and A. Yakovlev: “A fixed window level crossing ADC with
activity dependent power dissipation”, accepted for NEWCAS-2016.

ign

ADC des

Asynchronous controller

e STG specification e Speed-independent implementation

red

ramp_en

SENSOrs using asynchronous

Racer Circuit
Cap-to-digital
Conversion
(sensing)

Signal(H) < Signal{L)

Trigger Signal

Output Code for different V.,

—0.9V 0.8V
—0.6V —0.5V

@
b
o
=
P
B 1
=
-
=
o

'h S 5
6 Counts 300 ,:::-{’:H

=T

0 25 50 75 100125 150 175 200 225 250 275 300 3:‘-_3 350 3735 400 425 450 475 300 543

Capacitance (pF

Y. Xu et al,ICECS’16

Racer Circuit (Patented)

finl+—>7r1+

%
go+
N

fin2+—>12+

D. Sokolov et al, US Patent 10,581,435

Can we go further with
Async?

Where we can have a win-win situation!
To something bigger ... such as
Power electronics

And show impact outside the ‘usual’ digital
scope’

Example: Buck (DC-
DC) converter control

over-current (0C) /

/}—oTh_pmos
A\

control
gp_ack ap

ocC

—OTh_nmos

under-voltage

gnl

gn_sckl

contrel

gp_ackN

gpN

.

-+
zero-crossing \e—01_0 {_neg)

S

overvoltage 0V _max

under-voltage

W _ref

high-load W _min

Example: Switched Capacitor (DC-DC)
Converter control

controller © converter

g % &
Jd

WL

mode_control

Example: Buck converter

under-voltage j.._, V ref
T overcurent e mar Phase diagram specification:
gp_ack N
no ZC late ZC early ZC
ap maxi e
L ,|oc digital t &

) " control o @" d‘ﬁi
i 5 PMOS OFF gﬁn |
e O 1o NMOS OFF N

W oc wzc oc zc w oc
gn .
Time
gn_ack
zero-crossing N+—1_0 o :
Buck conditions: Operating modes:

Building asynchronous circuits in
Analog-Mixed Signal context » under-voltage (UV) « no zero-crossing

requires ,e’(te"d'"g e LN over-current (OC) o late zero-crossing
assumptions about speed-

independence ... » zero-crossing (ZC) e early zero-crossing

Analog design in digital context
IS hard

« If digital parts don’t use clock, they are normally
designed by hand and require massive simulations:

= E.g. analog designers cannot afford simulating
power converters from start-up; Instead they
force it into known state

= More specifically: 50 us of Spectre simulation
time takes approx. 10 hours using 8 CPU cores

= Hence they can only verify cherry-picked corners
of digital functionality

(from Dialog Semiconductor, 2016)

Towards Async Design for
Analog

« Asynchronous design offers many advantages for
AMS control

« Challenges:

= It requires behavioural capture and synthesis but
commercial EDA tools don’t support it

= Verification of asynchronous designs as part of
AMS

= How to provide non-invasiveness with existing
design practices — we need to work with SVA and
SPICE simulation traces

Buck example

control
gp_ack

over-current (0C) Ae—-| max

— -;Tr; _pmos

= ;

under-voltage (uv)

S G Specification of buck
controller

Synchronous design

» Two clocks: phase activation (~5MHz) and sampling (~100MHz)

© Easy to design (RTL synthesis flow)

@ Response time is of the order of clock period

@ Power consumed even when idle

@ Non-negligible probability of a synchronisation failure

Manual ad hoc design to alleviate the disadvantages

@ Verification by exhaustive simulation

Asynchronous design

» Event-driven control decisions
© Prompt response (a delay of few gates)

© No dynamic power consumption when the buck is inactive

© Other well known advantages
@ Insufficient methodology and tool support

» Ourgoals

Formal specification of power control behaviour

Reuse of existing synthesis methods

Formal verification of the obtained circuits

Demonstrate new advantages for power regulation

(power efficiency, smaller cails, ripple and transient response)

Multiphase Buck: Sync Control

SYNC_PHASE_CTRL

oc g

gn ack

an

=
[

gn_ack

-
SYNC_PHASE CTRL ®

ochl b— in out oc gp £ goN

7cN p——————————in out ZC gp_ack —ad gp ackh

hi

PHASE ACTIVATOR

uv gn o gni

actl

ov % gn_ack out in—agn ackn

phase clk b—

acth Mote: fsm_clk is implicit in
fsm clk o synchronizers {grey boxes)

* Two clocks: phase activation (slow) and sampling (fast)
* Need for multiple synchronizers (grey boxes) - latency & metastability
* Conventional RTL design flow

Multiphase Buck: Async Control

Source: D. Sokolov, V. Khomenko, A.
Mokhov, V. Dubikhin, D. Lloyd and A.
Yakovlev, "Automating the Design of

Asynchronous Logic Control for AMS
Electronics," in IEEE Transactions on
Computer-Aided Design of Integrated

Circuits and Systems, vol. 39, no. 5, pp.

9562-965, May 2020, doi:
10.1109/TCAD.2019.2907905.

ASYNC_PHASE CTRL

|

A
]
on

ap
gp_ack

gn
gn_ack

— gpl

—a gp_ackl

L gnl

—d gn ackl

ASYNC_PHASE_CTRL

oc

2C

hi

v

oV

ap
gp_ack

an

—O gph
— gp_ackN

— gni

—a gn ackh

%7

* Token ring architecture, no need for phase activation clock
* No need for synchronisers - all signals are asynchronous

* A4A design flow

Simulation results: Comparison

Verilog-A model of the 3-phase buck
Control implemented in TSMC 90nm

AMS simulation in CADENCE NC-VERILOG
Synchronous design

Phase activation clock — 5 MHz
Clocked FSM-based control — 100 MHz

Sampling and synchronisation

Asynchronous design

Phase activation - token ring with 200 ns timer (= 5 MHz)
Event-driven control (input-output mode)

Waiting rather than sampling (A2A components)

Simulation results

TIME (ps) O
phase clk

high load énnm'sal load

N
L
=
(ap]
™
(3p]
0
S
0
c
o
—_
=
3]
<,
o

«—phase —»

highload normal load

I S——
[

get&lpass _ L _TTTTT 1 R
01
I coil (A) 0
0.1

asynchronous

AZ2A components

RTL
synthesis

sanitiser uv

speed-independent
logic synthesis

Analog-to-Async (A2A) elements:
« Synchronisation

WAIT: synchronise with high level of hazardous input
RWAIT: WAIT that can be with released/cancellation
WAITO1: synchronise with hazardous rising edge

WAIT2: synchronise with both phases of a hazardous input

« Decision-making

WAITX: arbitrate between two hazardous inputs
SAMPLE: sample a hazardous input

AZ2A elements (cont.)

Wait: Synchronize handshake with Wait01: Synchronize handshake with
the high level of hazardous input the rising edge of hazardous input

hazardous asynchronous

hazardous asynchronous input handshake
input handshake

ffgg-\ san+

+ sig=1)*
\ 7

!

~sig+” ctrl+-—e—san-

hazardous
input

hazardous asynchronous

asynchronous input i handshake
actrl handshake

The full list of A2A components can be found
here:

https://workcraft.org/a2a/start

Reaction time

Buck controller

SYNC @ 100MHz
SYNC @ 333MHz
SYNC @ 666 MHz
SYNC @ 1GHz
ASYNC

4x 7x Ox

Improvement over 333MHz

Synchronous buck controllers exhibit latency of 2.5 clock cycles.

Peak current

—— 100MHZz
—ili— 333MHz
—%— 666MHZz
------ pem JGHZ

—&— ASYNC

<
E
-
-
@
-
(-
3
O
o
©
Q
o
-
O
]
O
-]
©
-

1.58 25.25 31 47 57

2 3 4 5 6
Coll inductance (uH)

—&— 100MHz —#—333MHz —%—666MHz =~ e JGHZ —@— ASYNC

Inductor losses

(

B O @
o o O

)]
QO
)]
)]
o
| -
O
-
O
=
o
=

(e}
o

18225 31 47 57

2 3 4 5 6
Coill inductance (uH)

—&— 100MHz —#—333MHz —%—666MHz == erm JGHZ —@— ASYNC

Design Results

Design flow is automated to large extent
* Library of A2A components
* Automatic logic synthesis

* Formal verification at the STG and circuit levels

Benefits of asynchronous multiphase buck controller
* Reliable, no synchronization failures

* Quick response time (few gate delays)

* Reaction time can be traded off for smaller coils

* Lower voltage ripple and peak current

Vlore reaading

D. Sokolov, V. Khomenko, A. Mokhov, V. Dubikhin, D. Lloyd and A.
Yakovlev, "Automating the Design of Asynchronous.L.ogic Control
for AMS Electronics," in I[EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 5, pp. 952-
965, May 2020, doi: 10.1109/TCAD.2019.2907905.

and

pS:/Workceralit.org/.

https://workcraft.org/

	Petri net based Async Design �with
	The role of Petri nets in design process
	Outline
	Book, papers and synthesis tools
	SwItch to Petri nets Primer
	Asynchronous modules
	Data-path / Control
	Control specification
	Control specification
	Control specification
	Control specification
	Control specification
	Asynchronous latches: C element
	Control specification
	A simple filter: specification
	A simple filter: block diagram
	A simple filter: control spec.
	A simple filter: control impl.
	Control: observable behavior
	Basic synthesis flow
	xyz-example: Specification
	Token flow
	State graph
	Next-state functions
	Deriving next state functions
	Design flow
	VME bus
	STG for the READ cycle
	Choice: Read and Write cycles
	Choice: Read and Write cycles
	Circuit synthesis
	Speed independence
	Design flow
	STG for the READ cycle
	Binary encoding of signals
	Binary encoding of signals
	Excitation / Quiescent Regions
	Next-state function
	Karnaugh map for LDS
	Design flow
	Concurrency reduction
	Concurrency reduction
	State encoding conflicts
	Signal Insertion
	Design flow
	Complex-gate implementation
	Implementability conditions
	Implementability conditions
	Persistency
	Speed-independent implementations
	Design flow
	Logic decomposition: example
	Logic decomposition: example
	Logic decomposition: example
	Logic decomposition: example
	Speed-independent Netlist
	Adding timing assumptions
	Adding timing assumptions
	State space domain
	State space domain
	State space domain
	Boolean domain
	Boolean domain
	Netlist with one constraint
	Netlist with one constraint
	Conclusions
	Application of Petri nets and Asynchronous Design �to Analog-Mixed Signal Systems
	Analog behaviour
	Analog elements
	Async (digital) behaviour
	Question to think about: ��Do we need to divide the world into analog and digital?��
	Areas for analog for async
	What about the other direction:�Async for Analog?
	Motivation for Async for Analog
	Motivation: power electronics context
	Emergence of “little digital” electronics
	Async ADC
	ADC design
	Asynchronous controller
	Sensors using asynchronous logic
	Racer Circuit (Patented)
	Can we go further with Async?
	Example: Buck (DC-DC) converter control
	Example: Switched Capacitor (DC-DC) �Converter control
	Example: Buck converter
	Analog design in digital context is hard
	Towards Async Design for Analog
	Buck example
	STG Specification of buck controller
	Synchronous design
	Asynchronous design
	Multiphase Buck: Sync Control
	Multiphase Buck: Async Control
	Simulation results: Comparison
	Simulation results
	A2A components
	A2A elements (cont.)
	Reaction time
	Peak current
	Inductor losses
	Design Results
	More reading

