
Custom async circuit design
from production rules to netlist

Benjamin Hill

benjamin.hill@intel.com

ASYNC Summer School 2024

mailto:benjamin.hill@intel.com

Legal Information

​Intel does not control or audit third-party data. You should consult other sources to evaluate
accuracy.​​​

Your costs and results may vary.

Results have been estimated or simulated

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

​No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.​​

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others​.​​

Implementing custom circuit designs

Our task:
Given a gate-level system expressed as production rule set (PRS),

generate netlist (SPICE) and physical implementation (layout)

Do as little full custom design as possible!

Refer to 2022 week 3 sessions describing Yale’s
open-source automated physical implementation flow

Production rule basics

a

b

out

b

a

out

pull
UP

network

out

a,b

pull
DOWN

network

out

a,ba & b -> out-

~a & ~b -> out+

Production rule sets form gates

in out

pull
UP

network

pull
DOWN

network

outin
~in -> out+
 in -> out-

Custom design flow

prs2net

https://avlsi.csl.yale.edu/act/doku.php?id=custom:start

Simulation options

Gate level Switch level Analog

simulator prsim, actsim irsim Xyce

input ACT PRS .sim SPICE

to generate
write directly or

use e.g. chp2prs
prs2sim prs2net

model unit delay RC delay full analog

fidelity lowest medium highest

speed fastest fast slow

CMOS transistors

CMOS transistors

PMOS NMOS
conducts current

between source and drain
(through P-type channel)

when gate is LOW

conducts current
between source and drain
(through N-type channel)

when gate is HIGH

voltage-controlled
switch

S D D S

G G

p substrate
n well

n+n+p+p+

PMOS NMOS

cross section

layout
(top down view)

schematic
symbol

G G

S D D S

CMOS transistors

PMOS NMOS

p substrate
n well

n+n+p+p+

G G

S D D S

G G

S D D S
B B

Transistor operation: cutoff

p substrate
n well

n+n+p+p+

1

PMOS NMOS

0

G=1 G=0

S=1 D=1 D=0 S=0
B=1 B=0

Transistor operation: channel formation

p substrate
n well

n+n+p+p+

G=0 G=1

S=1 D=1 D=0 S=0
B=1 B=0

0

PMOS NMOS

1

inversion region
forms channel

Transistor operation: saturation

p substrate
n well

n+n+p+p+

0

PMOS NMOS

1

current flows
through channelG=0 G=1

S=1 D=0 D=1 S=0
B=1 B=0

Transistor operation: cutoff

p substrate
n well

n+n+p+p+

1

PMOS NMOS

0

G=1 G=0

S=1 D=0 D=1 S=0
B=1 B=0

no channel
no current

CMOS transistors

PMOS NMOS
conducts current

between source and drain
(through P-type channel)

when gate is LOW

conducts current
between source and drain
(through N-type channel)

when gate is HIGH

voltage-controlled
switch

Layout and sizing

Layout example: inverter Vdd

GND

o
u

t

i
nin out

in out

in out

0 1

1 0

Design rules

set of geometric restrictions intended to yield
high probability of correct fabrication,
operation, and lifetime

Vdd

GND

o
u

t

i
n

https://skywater-pdk.readthedocs.io/en/main/rules

Transistor sizing

𝐿

𝑊𝑁

𝑊𝑃

Skywater 130
simplified design rules

λ 75 nm*

𝐿 2 λ

𝑊𝑁 6 λ

𝑊𝑃 10 λ

https://github.com/asyncvlsi/sky130l

* minimum feature size for Skywater 130
is 150nm transistor gate length

sky130l prs2net.conf
...
int std_p_width 10
int std_p_length 2

int std_n_width 6
int std_n_length 2
...
real p_n_ratio 1.512
real weak_to_strong_ratio 0.1

real lambda 7.5e-8

Transistor performance scaling intuition

𝐿

𝑊

Transistor device with
width and length parameters

What happens as we vary them?

Analogy: resistors

Increased resistance, decreased current

D
e

cr
e

as
e

d
 r

es
is

ta
n

ce
,

in
cr

e
as

e
d

 c
u

rr
en

t

current through resistor
(aka “drive strength”)

is inversely proportional to
effective resistance

𝐼 =
𝑉

𝑅

𝑅

𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
1

1

𝑅1
 +

1

𝑅2

=
𝑅

2

𝑅𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑅1 + 𝑅2 = 2𝑅

Transistor performance scaling intuition

𝐿

𝑊

2𝑊

2𝐿

Increasing gate L decreases drive strength

In
cr

e
as

in
g

tr
an

si
st

o
r

W
in

cr
e

as
e

s
d

ri
ve

 s
tr

en
gt

h

Key performance metric:
current through transistor

effective resistance
“drive strength”

p substrate
n+n+

Channel cross-section

Modern transistor architectures

𝐿

D SG𝑊

G

SD

Planar

D G S

FinFET

D
G

S

Gate-All-Around

D G
𝑁𝑓𝑖𝑛𝑠S

𝐿

D
G

S

𝑊

𝑁𝑠𝑡𝑎𝑐𝑘𝑠

𝐿

Digital designer summary

Use NMOS in pull-down network, PMOS in pull-up
⇒ single stage logic is always inverting

Transistor drive strength ∝
𝑊𝑖𝑑𝑡ℎ

𝐿𝑒𝑛𝑔𝑡ℎ

⇒ use minimum gate length for digital logic (usually)

State-holding gates

Combinational vs state-holding gates

Combinational

• Either UP or DOWN (but not both) is always conducting

State-holding

• At times neither UP nor DOWN is conducting

• out is undriven and maintains its previous value

Interfering

• Both UP and DOWN conducting simultaneously

• Causes short-circuit/crowbar current through gate, should
not be more than transient

pull
UP

network

pull
DOWN

network

outin

Example state-holding gate: Muller C-element

C
a

out

b

a & b -> out+
~a & ~b -> out-

a b out

0 0 0

0 1 hold previous state

1 0 hold previous state

1 1 1

not CMOS implementable!

a & b -> _out-
~a & ~b -> _out+

_outC
a

b

inverting C-element

_out -> out-
~_out -> out+

out

plus inverter

a & b #> _out-
 _out => out-

C
a

out

b

shorthand syntax

Problem: undriven dynamic nodes

a

b

a

b

_out

0

0

0

0

_outC
a

b

a & b -> _out-
~a & ~b -> _out+ 1

0

1

1

0

X

a b _out

0 0 1

0 1 hold previous state

1 0 hold previous state

1 1 0

Solution: staticizers

C-element PRS to SPICE example

a

b

a

b

_out
out

defproc celem (bool? a,b; bool! out)
{
 bool _out;
 prs {
 a & b #> _out-

 _out => out-
 }
}

C
a

out

b

SPICE basics
*---- act defproc: inv<> -----
* raw ports: in out

.subckt inv in out
*.PININFO in:I out:O
*.POWER VDD Vdd
*.POWER GND GND
*.POWER NSUB GND
*.POWER PSUB Vdd
* --- node flags ---
* out (combinational)
* --- end node flags ---
M0_ Vdd in out Vdd p W=1.5U L=0.6U
M1_ GND in out GND n W=0.9U L=0.6U

.ends
*---- end of process: inv<> -----

*---- act defproc: buf<> -----
* raw ports: in out
.subckt buf in out
xstage1 in __out inv
xstage2 __out out inv
.ends
*---- end of process: buf<> -----

Define new subcircuit (cell):
.subckt name ports

Comments begin with *
Metadata generated by prs2net

MOSFET instances:
Mname D G S B type <param=val>

End of inv subcircuit:

Instantiate subcircuits hierarchically:
xname ports cellname

C-element PRS to SPICE example

C-element PRS to SPICE example

a

b

a

b

_out
out

C-element with weak keeper staticizer

a

b

a

b

_out
out

w

defproc celem (bool? a,b; bool! out)
{
 bool _out;
 prs {
 a & b #> _out-

 _out => out-
 }
}

C
a

out

b

pull
UP

network

pull
DOWN

network

outin

dual of
pull-down
network

dual of
pull-up

network

Combinational feedback staticizer

Converts state-holding gate to be
combinational

Dual network = inverse logic function

• Between a network and its dual, exactly
one is conducting – never interfering

If neither UP nor DOWN is conducting
(original state-holding case), both dual
networks will conduct and feedback from
out selects which is enabled

C-element with combinational feedback

C
a

out

b

_out

a

b

a

b

out

a b

a b

defproc celem_comb (bool? a,b; bool! out)
{
 bool _out;
 prs {
 [comb=1] a & b #> _out-

 _out => out-
 }
}

pull
UP

network

pull
DOWN

network

outin

dual of
pull-down
network

dual of
pull-up

network

van Berkel C-element
a

b

a

b

_out
out

b

a

b

a

C
a

out

b

defproc celem_H (bool? a,b; bool! out)
{
 bool _out;
 bool nmid[2], pmid[2];
 prs {
 // N-stack

[keeper=0] a -> nmid[0]-
[keeper=0] b -> nmid[1]-

 passn (out, nmid[0], nmid[0])
 passn (b, nmid[0], _out)
 passn (a, nmid[1], _out)

 // Symmetric P-stack, out inverter
 …
 }
}

Layout generation

Generating transistor stacks
get_rect.ia: Generate rect layout files for sized cells
Load design and generate transistor netlist
act:read "sized.act“
act:expand
act:top all_cells
ckt:cell-map
ckt:map
ckt:save-sp "all_cells.sp“

Generate layout
load-scm "phydb.scm“
(area multiplier and aspect ratio arbitrary,
since we're only creating cells)
phydb:create 2 1 "output.lef“
act:layout:rect

> interact –Tsky130l < get_rect.ia
> mag.pl *.rect > magic_cells.tcl
> magic –Tsky130l [source magic_cells.tcl]

See: https://avlsi.csl.yale.edu/act/doku.php?id=asic:cells:start

Auto-generated transistor stacks

Weak keeper Combinational feedback

Complete cell wiring for use with place and route flow
(e.g. gridded cell or standard cell)

Gate sizing
// Baseline x1 uses default sizes

defcell C2x1 <: celem() {}

// Double size output inverter

defcell C2x2 <: celem() {sizing{out{-2}}}

// 2x logic stacks, 4x output inverter

defcell C2x4 <: celem()
{sizing{_out{-2}; out{-4}}}

// That output inverter was a bit tall; fold in half

defcell C2x4F <: celem()
{sizing{_out{-2}; out{-2,svt,2}}}

a

b

a

b

_out
out

w

See: https://avlsi.csl.yale.edu/act/doku.php?id=language:langs:sizing

import "celem.act";

Full custom flow example

defproc inv (bool? in; bool! out)
{
 prs { in => out- }
}

*---- act defproc: inv<> -----
.subckt inv in out
*.PININFO in:I out:O
*.POWER VDD Vdd
*.POWER GND GND
*.POWER NSUB GND
*.POWER PSUB Vdd
* --- node flags ---
* out (combinational)

M0_ Vdd in out Vdd p W=1.5U L=0.6U
M1_ GND in out GND n W=0.9U L=0.6U

.ends
*---- end of process: inv<> -----

in out

in out

Vdd

GND

o
u

t

i
n

in out

0 1

1 0

Design specification Production rules

Netlist (SPICE)

Schematic

Layout

write or
compile prs2net

prs2sim

full custom or
semi-automated

CHP, dataflow,
link-joint, etc

extracted
parasitics

	Slide 1: Custom async circuit design from production rules to netlist
	Slide 2: Legal Information
	Slide 3: Implementing custom circuit designs
	Slide 4: Production rule basics
	Slide 5: Production rule sets form gates
	Slide 6: Custom design flow
	Slide 7: Simulation options
	Slide 8: CMOS transistors
	Slide 9: CMOS transistors
	Slide 10
	Slide 11: CMOS transistors
	Slide 12: Transistor operation: cutoff
	Slide 13: Transistor operation: channel formation
	Slide 14: Transistor operation: saturation
	Slide 15: Transistor operation: cutoff
	Slide 16: CMOS transistors
	Slide 17: Layout and sizing
	Slide 18: Layout example: inverter
	Slide 19: Design rules
	Slide 20: Transistor sizing
	Slide 21: Transistor performance scaling intuition
	Slide 22: Analogy: resistors
	Slide 23: Transistor performance scaling intuition
	Slide 24: Modern transistor architectures
	Slide 25: Digital designer summary
	Slide 26: State-holding gates
	Slide 27: Combinational vs state-holding gates
	Slide 28: Example state-holding gate: Muller C-element
	Slide 29: Problem: undriven dynamic nodes
	Slide 30: C-element PRS to SPICE example
	Slide 31: SPICE basics
	Slide 32: C-element PRS to SPICE example
	Slide 33: C-element PRS to SPICE example
	Slide 35: C-element with weak keeper staticizer
	Slide 36: Combinational feedback staticizer
	Slide 37: C-element with combinational feedback
	Slide 40: van Berkel C-element
	Slide 42: Layout generation
	Slide 43
	Slide 44: Generating transistor stacks
	Slide 45: Auto-generated transistor stacks
	Slide 46: Gate sizing
	Slide 47: Full custom flow example

