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Implementing custom circuit designs

Our task: 
Given a gate-level system expressed as production rule set (PRS), 

generate netlist (SPICE) and physical implementation (layout)

Do as little full custom design as possible!

Refer to 2022 week 3 sessions describing Yale’s 
open-source automated physical implementation flow



Production rule basics
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Production rule sets form gates
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Custom design flow

prs2net

https://avlsi.csl.yale.edu/act/doku.php?id=custom:start



Simulation options

Gate level Switch level Analog

simulator prsim, actsim irsim Xyce

input ACT PRS .sim SPICE

to generate
write directly or

use e.g. chp2prs
prs2sim prs2net

model unit delay RC delay full analog

fidelity lowest medium highest

speed fastest fast slow



CMOS transistors
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Transistor operation: cutoff
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Transistor operation: channel formation
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Transistor operation: saturation
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Layout and sizing



Layout example: inverter Vdd
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Design rules

set of geometric restrictions intended to yield 
high probability of correct fabrication, 
operation, and lifetime

Vdd
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https://skywater-pdk.readthedocs.io/en/main/rules



Transistor sizing

𝐿

𝑊𝑁

𝑊𝑃

Skywater 130 
simplified design rules

λ 75 nm*

𝐿 2 λ

𝑊𝑁 6 λ

𝑊𝑃 10 λ

https://github.com/asyncvlsi/sky130l

* minimum feature size for Skywater 130 
is 150nm transistor gate length

# sky130l prs2net.conf
...
int std_p_width 10
int std_p_length 2

int std_n_width 6
int std_n_length 2
...
real p_n_ratio 1.512
real weak_to_strong_ratio 0.1

real lambda 7.5e-8



Transistor performance scaling intuition

𝐿

𝑊

Transistor device with
width and length parameters

What happens as we vary them?



Analogy: resistors

Increased resistance, decreased current
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Transistor performance scaling intuition
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Key performance metric:
current through transistor

effective resistance
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Modern transistor architectures
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Digital designer summary

Use NMOS in pull-down network, PMOS in pull-up
⇒ single stage logic is always inverting

Transistor drive strength ∝
𝑊𝑖𝑑𝑡ℎ

𝐿𝑒𝑛𝑔𝑡ℎ

⇒ use minimum gate length for digital logic (usually)



State-holding gates



Combinational vs state-holding gates

Combinational

• Either UP or DOWN (but not both) is always conducting

State-holding

• At times neither UP nor DOWN is conducting

• out is undriven and maintains its previous value

Interfering

• Both UP and DOWN conducting simultaneously

• Causes short-circuit/crowbar current through gate, should 
not be more than transient

pull
UP

network

pull
DOWN

network

outin



Example state-holding gate: Muller C-element

C
a

out

b

a &  b -> out+
~a & ~b -> out-

a b out

0 0 0

0 1 hold previous state

1 0 hold previous state

1 1 1

not CMOS implementable!

a &  b -> _out-
~a & ~b -> _out+

_outC
a

b

inverting C-element

_out -> out-
~_out -> out+

out

plus inverter

a & b #> _out-
 _out =>  out-

C
a

out

b

shorthand syntax



Problem: undriven dynamic nodes
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Solution: staticizers



C-element PRS to SPICE example
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defproc celem (bool? a,b; bool! out) 
{
  bool _out;
  prs {  
    a & b #> _out- 

    _out => out-
  } 
} 

C
a

out
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SPICE basics
*---- act defproc: inv<> -----
* raw ports:  in out

.subckt inv in out
*.PININFO in:I out:O
*.POWER VDD Vdd
*.POWER GND GND
*.POWER NSUB GND
*.POWER PSUB Vdd
* --- node flags ---
* out (combinational)
* --- end node flags ---
M0_ Vdd in out Vdd p W=1.5U L=0.6U
M1_ GND in out GND n W=0.9U L=0.6U

.ends
*---- end of process: inv<> -----

*---- act defproc: buf<> -----
* raw ports:  in out
.subckt buf in out
xstage1 in __out inv
xstage2 __out out inv
.ends
*---- end of process: buf<> -----

Define new subcircuit (cell): 
.subckt name ports

Comments begin with * 
Metadata generated by prs2net

MOSFET instances:
Mname D G S B type <param=val>

End of inv subcircuit:

Instantiate subcircuits hierarchically:
xname ports cellname



C-element PRS to SPICE example



C-element PRS to SPICE example
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C-element with weak keeper staticizer
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defproc celem (bool? a,b; bool! out) 
{
  bool _out;
  prs {  
    a & b #> _out- 

    _out => out-
  } 
} 

C
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out
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Combinational feedback staticizer

Converts state-holding gate to be 
combinational

Dual network = inverse logic function 

• Between a network and its dual, exactly 
one is conducting – never interfering

If neither UP nor DOWN is conducting 
(original state-holding case), both dual 
networks will conduct and feedback from 
out selects which is enabled



C-element with combinational feedback
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defproc celem_comb (bool? a,b; bool! out) 
{
  bool _out;
  prs {  
    [comb=1] a & b #> _out- 

    _out => out-
  } 
} 
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van Berkel C-element
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defproc celem_H (bool? a,b; bool! out) 
{
  bool _out;
  bool nmid[2], pmid[2];
  prs {  
    // N-stack

[keeper=0] a -> nmid[0]- 
[keeper=0] b -> nmid[1]- 

    passn (out, nmid[0], nmid[0])
    passn (b, nmid[0], _out)
    passn (a, nmid[1], _out)

    // Symmetric P-stack, out inverter
    …
  } 
} 



Layout generation





Generating transistor stacks
# get_rect.ia: Generate rect layout files for sized cells
# Load design and generate transistor netlist
act:read "sized.act“
act:expand
act:top all_cells
ckt:cell-map
ckt:map
ckt:save-sp "all_cells.sp“

# Generate layout
load-scm "phydb.scm“
# (area multiplier and aspect ratio arbitrary, 
#  since we're only creating cells)
phydb:create 2 1 "output.lef“
act:layout:rect

> interact –Tsky130l < get_rect.ia
> mag.pl *.rect > magic_cells.tcl
> magic –Tsky130l  [source magic_cells.tcl]

See: https://avlsi.csl.yale.edu/act/doku.php?id=asic:cells:start



Auto-generated transistor stacks

Weak keeper Combinational feedback

Complete cell wiring for use with place and route flow 
(e.g. gridded cell or standard cell)



Gate sizing
// Baseline x1 uses default sizes

defcell C2x1 <: celem() {}

// Double size output inverter

defcell C2x2 <: celem() {sizing{out{-2}}}

// 2x logic stacks, 4x output inverter

defcell C2x4 <: celem() 
{sizing{_out{-2}; out{-4}}}

// That output inverter was a bit tall; fold in half

defcell C2x4F <: celem() 
{sizing{_out{-2}; out{-2,svt,2}}}

a

b

a

b

_out
out

w

See: https://avlsi.csl.yale.edu/act/doku.php?id=language:langs:sizing

import "celem.act";



Full custom flow example

defproc inv (bool? in; bool! out) 
{
  prs { in => out- } 
} 

*---- act defproc: inv<> -----
.subckt inv in out
*.PININFO in:I out:O
*.POWER VDD Vdd
*.POWER GND GND
*.POWER NSUB GND
*.POWER PSUB Vdd
* --- node flags ---
* out (combinational)

M0_ Vdd in out Vdd p W=1.5U L=0.6U
M1_ GND in out GND n W=0.9U L=0.6U

.ends
*---- end of process: inv<> -----

in out
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in out

0 1

1 0

Design specification Production rules

Netlist (SPICE)

Schematic

Layout

write or
compile prs2net

prs2sim

full custom or 
semi-automated

CHP, dataflow,
link-joint, etc

extracted
parasitics
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