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Outline
ã Dataflow basics

l Pipelining primitives
ã Performance estimation

l “Canopy Graph” analysis
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Dataflow basics
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What is Dataflow?
ã Graphical description of operations in a computation

ã Sequencing is determined by data dependencies
l inputs trigger a function
l … instead of an overall control structure

ã Intuitive, natural representation for:
l data-driven algorithms, e.g. DSPs
l stream processing

ã Implementation is not necessarily asynchronous
l but async is often a natural match
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Example: multiply-accumulate
Motivation: linear algebra core 
operation 

y ← αx + y (SAXPY)

If you care about DSP, HPC, 
AI/deep learning… this is a useful 
kernel to implement

MULTIPLY

ADDy0
(0)

α x

y

5[Original slide by Benjamin Hill]



Dataflow primitives
ã Reading from all input 

channels, writing to all output 
channels

ã Reading from 1, writing to 
one-of-N (demux)

ã Reading from one-of-N, writing 
to 1 (mux / conditional merge)

ã Other misc useful blocks:
l initialization
l source/sink
l merging/arbitration

SOURCE SINKINIT

BUFFER
FORK 

(COPY)

...

DEMUX
(SPLIT)

MUX

MERGE

JOIN
(FUNCTION)

...
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BUFFER
ã Transmit token from input to output 

with storage and handshaking flow 
control
l one pipeline stage (FIFO stage)
l latch + handshake control

In

Out

BUFFER

*[In?x; Out!x] Also known as:  slack buffer, one-place FIFO, latch
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FORK / COPY
Copy input token to multiple 
destinations

In

FORK
(COPY)

Out0 Outn-1

...

*[In?x; Out0!x, …, Outn-1!x] Also known as:  n-way link
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JOIN / FUNCTION
Read values from all inputs, 
compute result and send on 
output

Example functions: arithmetic, 
logic, decoding, etc.

In0

JOIN
(FUNCTION)

Inn-1

Out

...

*[ In0?arg0, In1?arg1, … , Inn1?argn-1;
Out!func(arg0,arg1,…,argn-1)

]
Also known as:  OPERATOR
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Multiplexer (MUX)
Select one input to send to output
based on control signal

l ignore other input (do not consume)
l generalizable to N inputs

Not to be confused with 
combinational MUX:

l same basic behavior, but this is a 
dataflow operator

l unused input channel is not 
consumed; its data is still available

C0      1

MUX

In0 In1

Out

*[C?c;
[  c=0 -> In0?x
[] c=1 -> In1?x
];

Out!x
]Also known as:  controlled merge, conditional join
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DEMUX
Steer/route input to one of two 
outputs

l based on value of control signal
l generalizable to N outputs

Out0

DEMUX
0      1

In

Out1

C

*[In?x, C?c;
[  c=0 -> Out0!x
[] c=1 -> Out1!x
]

]

Also known as:  SPLIT
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Initial token buffer
Send one initial value token, then 
behave as a normal buffer

INIT
(value)

In

Out

Out!value; *[In?x; Out!x] Also known as:  INITIALIZER
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SOURCE
Repeatedly send tokens with same 
constant value

Out

SOURCE
(value)

*[Out!value] Also known as:  bit/token generator
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SINK
Consume and discard input token

l Not particularly useful by itself, but in 
combination with other dataflow primitives

SINK

In

*[In?value] Also known as:  (bit) bucket
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Uncontrolled merge
Combine two input streams to one 
output

Depending on system design, selection 
is either:

l deterministic – only one input will arrive 
at a time (ensured by environment)

l non-deterministic – requires arbitration 
to choose if both inputs can arrive close 
together

*[ [  #In0 -> In0?x
[] #In1 -> In1?x
];
Out!x

]
Also known as:  MIXER, JOIN
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In0 In1

Out

MERGE



Recap:  Dataflow primitives
ã Reading from all input 

channels, writing to all output 
channels

ã Reading from 1, writing to 
one-of-N (demux)

ã Reading from one-of-N, writing 
to 1 (mux / conditional merge)

ã Other misc useful blocks:
l initialization
l source/sink
l merging/arbitration

SOURCE SINKINIT

BUFFER
FORK 

(COPY)

...

DEMUX
(SPLIT)

MUX

MERGE

JOIN
(FUNCTION)

...
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Some useful design patterns
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Wagging or Multithreading
Problem:  Slow function block

Solution:  Duplicate function 
block and interleave data 
between them

è Improves throughput at the 
cost of area

Example: large arithmetic block 
where it is difficult to add internal 
pipelining

Not just for compute, could also 
be storage (e.g. tree FIFO)

Out

DUPLICATED
FUNCTION

DUPLICATED
FUNCTION

DEMUX
0            1

In C

0            1
MUX

BUFFER
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Resource sharing
Idea: share one expensive or 
unique resource between 
multiple users

Improves area at the cost of 
throughput

SHARED
FUNCTION

DEMUX
0            1

In0 C

0            1
MUX

In1

Out0 Out1
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IF statement
Useful for high-level synthesis

Shown with FUNCTION blocks 
but can also be other dataflow 
graphs (e.g. nested IF 
statements)

Out

executed
if false

executed
if true

DEMUX
0            1

In condition

0            1
MUX
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WHILE loop
Can also implement other 
loop constructs with a 
similar pattern

loop 
body

DEMUX
0            1

In

0            1
MUX

Out

continue
loop?

0
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Performance Estimation
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Performance Basics: pipeline stages

Each stage characterized by three delays:
l Forward latency, Lf

ØTime for data to propagate forward
l Reverse latency, Lr

ØTime for a stage to receive and process ack
ØTime for a ‘hole’ to travel backward

l Cycle time, T = Lf + Lr
ØThroughput, tpt = 1 / cycle time

An abstracted view of the pipeline

Lf /Lr Lf /Lr Lf /Lr

req
controller

La
tc

h

La
tc

h

La
tc

h

controller controller

logic logic

Cycle time in an asynchronous pipeline

ack
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Goal

ã Motivation: crucial part of an optimizing design flow
l Used repeatedly in an optimization loop
l Requires low runtime and good accuracy
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Input: pipelined system-level implementation

Output: system-level throughput



Early work:  Pipeline Rings

Classic work by T. Williams and M. Horowitz [ISSCC-91] 

Ring throughput depends on its occupancy (#items)
l For small number of items:  under-utilization limits throughput
l For small number of  holes:  congestion limits throughput
l Throughput also limited by the slowest stage
l Graph is a convex shape:  “Canopy Graph” 

Ø [term coined by Singh et al. ASYNC-02 and Gill/Singh ICCAD-08]

“Canopy Graph”

1/F 1/R
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Canopy Graphs for linear pipeline

ã Canopy graph: also useful approximation for linear pipelines
l In steady state:  linear pipeline can be modeled as ring

Ø Rate at which data enters and leaves is identical
Ø i.e. one token leaves è one token enters 26

Right 
env.

Left 
env.
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Key Idea:  Generalize Canopy Graphs
ã Goal:  Find the system-level throughput for an async dataflow system

l Use a modular, “divide-and-conquer” method

ã Challenge:  Throughput is not composable
l Complex interdependencies dictate throughput

ã Take problem to higher dimension to make decomposable
l One-dimensional throughput is not composable
l Two-dimensional throughput-occupancy pairs are
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Performance Analysis: Method
ã Modular method for performance analysis

l Exploits system hierarchy with “divide-and-conquer” method
l First: calculate canopy graph at each leaf node

Ø Each leaf node is a single stage
l Next: compose canopy graphs at each level of the hierarchy
l Finally: canopy graph for root node gives system-level performance

ã Requires composition algorithm for common circuit structures
l Parallel, sequential, conditional, and iterative

28

Pi
pe

lin
e 

Th
ro

ug
hp

ut

Pipeline Occupancy

single pipeline 
stages

compositions of 
stages

“Canopy Graph”

Gennette Gill and Montek Singh, “Performance Estimation and Slack Matching for Pipelined Asynchronous 
Architectures with Choice,” International Conference on Computer-Aided Design (ICCAD) (November 2008).



1) Parallel Composition
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Parallel structures [Lines98]
l Data copied at fork
l A and B compute in parallel
l Results recombined at join

Operation invariants under 
composition:
1) # of items in each branch equal
2) Branches have same throughput

Throughput of structure:
l Intuition: at each occupancy, 

throughput limited by slower 
branch

⇒ Intersection of canopy graphs of 
A and B

Pi
pe

lin
e 

Th
ro

ug
hp

ut

Pipeline Occupancy

fork join

Canopy Graph of Composed Structure
Component A

Pipelined Component B

Component B

Parallel Composition of A and B

Pipelined Component A

Composition 
of A and B



2) Sequential Composition
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Sequential Structures [Lines98]
l Data transmitted through A, 

then through B

Operation invariants under 
composition:
1) Find total # items: sum 

of # items in both pipes
2) Throughput A = Throughput B
3) Max throughput: limited by 

slower pipeline

Throughput of structure:
⇒ “horizontal sum" of canopy 

graphs of A and B
l At each throughput, add the 

occupancies of the two 
pipelines

A B

Pi
pe

lin
e 

Th
ro

ug
hp

ut

Pipeline Occupancy

Pipelined Component B
Pipelined Component A

Sequential Composition of A and B

Component A Component B

Composition 
of A and B

Canopy Graph of Composed Structure



3) Conditional Composition

ã Operation invariants under composition:
l Ratio of # items in each branch = ratio of probabilities

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦!
𝑝!

=
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦"

𝑝"
l Ratio of throughput of each branch = ratio of probabilities

𝑇𝑃𝑇!
𝑝!

=
𝑇𝑃𝑇"
𝑝"

ã Throughput of conditional structure:
l Divide each branch’s canopy graph by its probability pi
l Compute intersection of scaled canopy graphs

ã “Bursty” inputs cause additional bottlenecks (see ICCAD-08 paper for details)
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split MUX
branch0
branch1
Boolean

Conditional Composition of branch0 and branch1 Example: 
p0 = 2/3 and p1 = 1/3

2 items enter branch0
è

1 item enters branch1



Step 1) uniform scaling: enlarge each branch’s canopy graph
Example: p0 = 2/3 and p1 = 1 - p0 = 1/3

Step 2) intersection: finds system-level performance 

3) Conditional Composition (cont’d)
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4) Iterative Loop Composition
ã Operation invariants under composition:

l Each item passes through the loop multiple times
l Loop can handle multiple items simultaneously

ã Throughput of composition
l # data items processed decreases as iteration count increases
⇒ Scale down based on expected number of iterations
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Analysis: Benchmark Examples
ã Analysis algorithm demonstrated on 8 benchmarks

l Chosen to represent a variety of circuit constructs

ã Evaluated several circuit implementations of some 
l Naive implementation vs. hand-optimized version
l Different choice models: uniform random vs. correlated
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Composition Type
Example      Parallel Sequential Conditional Iteration
CORDIC ✔ ✔ ✔

CRC ✔ ✔

DIFFEQ ✔ ✔ ✔

GCD ✔ ✔

Ray-tracing ✔ ✔ ✔

MULT ✔ ✔

JPEG ✔ ✔ ✔ ✔



Performance Analysis: Results
ã Total of 12 different circuit examples tested

l Error < 4% for all examples, runtime ≤ 10 ms for all examples
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Size Throughput Error Runtime
Example Version # stages simulated predicted (%) (ms)

CORDIC
original 31 90.9 90.9 0.00 ~10
optimized 44 167 167 0.00 ~10
bursty inputs 44 83 83 0.00 ~10

CRC
original 23 292 286 2.05 ~10
optimized 27 352 357 1.42 ~10
bursty inputs 27 305 300 1.64 ~10

DIFFEQ original 10 18.3 18.2 0.55 <10
GCD original 21 49 50 2.04 ~10
Ray-

tracing
original 21 161 167 3.73 ~10
optimized 166 222 222 0.00 ~10

MULT
original 13 38.7 38.4 0.78 <10
optimized 21 167 167 0.00 <10



Performance Analysis: Summary

ã Fast: restriction to hierarchical systems yielded fast runtimes
l Divide-and-conquer approach with linear runtime
l Modular canopy graph analysis for many constructs

Ø Sequential, parallel, conditional, and loop
l Expressive subset: modeled real-world applications

Ø CORDIC, CRC, ray intersection algorithm, etc.

ã Accurate: tested on several many non-trivial examples
l Throughput estimates within 4% of simulation results

36

Pi
pe

lin
e 

Th
ro

ug
hp

ut

Pipeline Occupancy

“Canopy Graph”
circuit hierarchy system-level performance



References
ã Gennette Gill.  Analysis and Optimization for Pipelined Asynchronous Systems.  PhD 

thesis.  UNC Chapel Hill. 2010.

ã Gennette Gill and Montek Singh.  “Performance Estimation and Slack Matching for 
Pipelined Asynchronous Architectures with Choice.” ICCAD 2008.

ã Montek Singh and Steven Nowick.  “MOUSETRAP:  Ultra-High-Speed Transition-
Signaling Asynchronous Pipelines.”  ICCD 2001.

ã Montek Singh and Steven Nowick.  “MOUSETRAP:  High-Speed Transition-Signaling 
Asynchronous Pipelines.”  TVLSI 2007.

ã Gennette Gill, J. Hansen, A. Agiwal, L. Vicci and M, Singh.  "A High-Speed GCD 
Chip: A Case Study in Asynchronous Design." ISVLSI 2009.

37


