
Dataflow Design

Montek Singh
UNC Chapel Hill

ASYNC 2024 Summer School
Week 1: July 1

1

Outline
ã Dataflow basics

l Pipelining primitives
ã Performance estimation

l “Canopy Graph” analysis

2

Dataflow basics

3

What is Dataflow?
ã Graphical description of operations in a computation

ã Sequencing is determined by data dependencies
l inputs trigger a function
l … instead of an overall control structure

ã Intuitive, natural representation for:
l data-driven algorithms, e.g. DSPs
l stream processing

ã Implementation is not necessarily asynchronous
l but async is often a natural match

4

Example: multiply-accumulate
Motivation: linear algebra core
operation

y ← αx + y (SAXPY)

If you care about DSP, HPC,
AI/deep learning… this is a useful
kernel to implement

MULTIPLY

ADDy0
(0)

α x

y

5[Original slide by Benjamin Hill]

Dataflow primitives
ã Reading from all input

channels, writing to all output
channels

ã Reading from 1, writing to
one-of-N (demux)

ã Reading from one-of-N, writing
to 1 (mux / conditional merge)

ã Other misc useful blocks:
l initialization
l source/sink
l merging/arbitration

SOURCE SINKINIT

BUFFER
FORK

(COPY)

...

DEMUX
(SPLIT)

MUX

MERGE

JOIN
(FUNCTION)

...

6[Modified from original slide by Benjamin Hill]

BUFFER
ã Transmit token from input to output

with storage and handshaking flow
control
l one pipeline stage (FIFO stage)
l latch + handshake control

In

Out

BUFFER

*[In?x; Out!x] Also known as: slack buffer, one-place FIFO, latch

7[Original slide by Benjamin Hill]

FORK / COPY
Copy input token to multiple
destinations

In

FORK
(COPY)

Out0 Outn-1

...

*[In?x; Out0!x, …, Outn-1!x] Also known as: n-way link

8[Original slide by Benjamin Hill]

JOIN / FUNCTION
Read values from all inputs,
compute result and send on
output

Example functions: arithmetic,
logic, decoding, etc.

In0

JOIN
(FUNCTION)

Inn-1

Out

...

*[In0?arg0, In1?arg1, … , Inn1?argn-1;
Out!func(arg0,arg1,…,argn-1)

]
Also known as: OPERATOR

9[Original slide by Benjamin Hill]

Multiplexer (MUX)
Select one input to send to output
based on control signal

l ignore other input (do not consume)
l generalizable to N inputs

Not to be confused with
combinational MUX:

l same basic behavior, but this is a
dataflow operator

l unused input channel is not
consumed; its data is still available

C0 1

MUX

In0 In1

Out

*[C?c;
[c=0 -> In0?x
[] c=1 -> In1?x
];

Out!x
]Also known as: controlled merge, conditional join

10[Original slide by Benjamin Hill]

DEMUX
Steer/route input to one of two
outputs

l based on value of control signal
l generalizable to N outputs

Out0

DEMUX
0 1

In

Out1

C

*[In?x, C?c;
[c=0 -> Out0!x
[] c=1 -> Out1!x
]

]

Also known as: SPLIT

11[Original slide by Benjamin Hill]

Initial token buffer
Send one initial value token, then
behave as a normal buffer

INIT
(value)

In

Out

Out!value; *[In?x; Out!x] Also known as: INITIALIZER

12[Original slide by Benjamin Hill]

SOURCE
Repeatedly send tokens with same
constant value

Out

SOURCE
(value)

*[Out!value] Also known as: bit/token generator

13[Original slide by Benjamin Hill]

SINK
Consume and discard input token

l Not particularly useful by itself, but in
combination with other dataflow primitives

SINK

In

*[In?value] Also known as: (bit) bucket

14[Original slide by Benjamin Hill]

Uncontrolled merge
Combine two input streams to one
output

Depending on system design, selection
is either:

l deterministic – only one input will arrive
at a time (ensured by environment)

l non-deterministic – requires arbitration
to choose if both inputs can arrive close
together

*[[#In0 -> In0?x
[] #In1 -> In1?x
];
Out!x

]
Also known as: MIXER, JOIN

15[Original slide by Benjamin Hill]

In0 In1

Out

MERGE

Recap: Dataflow primitives
ã Reading from all input

channels, writing to all output
channels

ã Reading from 1, writing to
one-of-N (demux)

ã Reading from one-of-N, writing
to 1 (mux / conditional merge)

ã Other misc useful blocks:
l initialization
l source/sink
l merging/arbitration

SOURCE SINKINIT

BUFFER
FORK

(COPY)

...

DEMUX
(SPLIT)

MUX

MERGE

JOIN
(FUNCTION)

...

16[Modified from original slide by Benjamin Hill]

Some useful design patterns

17

Wagging or Multithreading
Problem: Slow function block

Solution: Duplicate function
block and interleave data
between them

è Improves throughput at the
cost of area

Example: large arithmetic block
where it is difficult to add internal
pipelining

Not just for compute, could also
be storage (e.g. tree FIFO)

Out

DUPLICATED
FUNCTION

DUPLICATED
FUNCTION

DEMUX
0 1

In C

0 1
MUX

BUFFER

18[Original slide by Benjamin Hill]

Resource sharing
Idea: share one expensive or
unique resource between
multiple users

Improves area at the cost of
throughput

SHARED
FUNCTION

DEMUX
0 1

In0 C

0 1
MUX

In1

Out0 Out1

19[Original slide by Benjamin Hill]

IF statement
Useful for high-level synthesis

Shown with FUNCTION blocks
but can also be other dataflow
graphs (e.g. nested IF
statements)

Out

executed
if false

executed
if true

DEMUX
0 1

In condition

0 1
MUX

20[Original slide by Benjamin Hill]

WHILE loop
Can also implement other
loop constructs with a
similar pattern

loop
body

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

0

21[Original slide by Benjamin Hill]

Performance Estimation

22

Performance Basics: pipeline stages

Each stage characterized by three delays:
l Forward latency, Lf

ØTime for data to propagate forward
l Reverse latency, Lr

ØTime for a stage to receive and process ack
ØTime for a ‘hole’ to travel backward

l Cycle time, T = Lf + Lr
ØThroughput, tpt = 1 / cycle time

An abstracted view of the pipeline

Lf /Lr Lf /Lr Lf /Lr

req
controller

La
tc

h

La
tc

h

La
tc

h

controller controller

logic logic

Cycle time in an asynchronous pipeline

ack

23

Goal

ã Motivation: crucial part of an optimizing design flow
l Used repeatedly in an optimization loop
l Requires low runtime and good accuracy

24

Input: pipelined system-level implementation

Output: system-level throughput

Early work: Pipeline Rings

Classic work by T. Williams and M. Horowitz [ISSCC-91]

Ring throughput depends on its occupancy (#items)
l For small number of items: under-utilization limits throughput
l For small number of holes: congestion limits throughput
l Throughput also limited by the slowest stage
l Graph is a convex shape: “Canopy Graph”

Ø [term coined by Singh et al. ASYNC-02 and Gill/Singh ICCAD-08]

“Canopy Graph”

1/F 1/R

25

1 2 N-2 N-10 Ring Occupancy
R

in
g

Th
ro

ug
hp

ut
N

data
limited

hole
limited

limited by
slowest stage

Canopy Graphs for linear pipeline

ã Canopy graph: also useful approximation for linear pipelines
l In steady state: linear pipeline can be modeled as ring

Ø Rate at which data enters and leaves is identical
Ø i.e. one token leaves è one token enters 26

Right
env.

Left
env.

1 2 N-2 N-10 Ring Occupancy
R

in
g

Th
ro

ug
hp

ut
N

data
limited

hole
limited

limited by
slowest stage

1/F 1/R

Key Idea: Generalize Canopy Graphs
ã Goal: Find the system-level throughput for an async dataflow system

l Use a modular, “divide-and-conquer” method

ã Challenge: Throughput is not composable
l Complex interdependencies dictate throughput

ã Take problem to higher dimension to make decomposable
l One-dimensional throughput is not composable
l Two-dimensional throughput-occupancy pairs are

27

Th
ro

ug
hp

ut

Occupancy

module 1

module 2

module 1
module 2
composed throughput

module 1

Performance Analysis: Method
ã Modular method for performance analysis

l Exploits system hierarchy with “divide-and-conquer” method
l First: calculate canopy graph at each leaf node

Ø Each leaf node is a single stage
l Next: compose canopy graphs at each level of the hierarchy
l Finally: canopy graph for root node gives system-level performance

ã Requires composition algorithm for common circuit structures
l Parallel, sequential, conditional, and iterative

28

Pi
pe

lin
e

Th
ro

ug
hp

ut

Pipeline Occupancy

single pipeline
stages

compositions of
stages

“Canopy Graph”

Gennette Gill and Montek Singh, “Performance Estimation and Slack Matching for Pipelined Asynchronous
Architectures with Choice,” International Conference on Computer-Aided Design (ICCAD) (November 2008).

1) Parallel Composition

29

Parallel structures [Lines98]
l Data copied at fork
l A and B compute in parallel
l Results recombined at join

Operation invariants under
composition:
1) # of items in each branch equal
2) Branches have same throughput

Throughput of structure:
l Intuition: at each occupancy,

throughput limited by slower
branch

⇒ Intersection of canopy graphs of
A and B

Pi
pe

lin
e

Th
ro

ug
hp

ut

Pipeline Occupancy

fork join

Canopy Graph of Composed Structure
Component A

Pipelined Component B

Component B

Parallel Composition of A and B

Pipelined Component A

Composition
of A and B

2) Sequential Composition

30

Sequential Structures [Lines98]
l Data transmitted through A,

then through B

Operation invariants under
composition:
1) Find total # items: sum

of # items in both pipes
2) Throughput A = Throughput B
3) Max throughput: limited by

slower pipeline

Throughput of structure:
⇒ “horizontal sum" of canopy

graphs of A and B
l At each throughput, add the

occupancies of the two
pipelines

A B

Pi
pe

lin
e

Th
ro

ug
hp

ut

Pipeline Occupancy

Pipelined Component B
Pipelined Component A

Sequential Composition of A and B

Component A Component B

Composition
of A and B

Canopy Graph of Composed Structure

3) Conditional Composition

ã Operation invariants under composition:
l Ratio of # items in each branch = ratio of probabilities

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦!
𝑝!

=
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦"

𝑝"
l Ratio of throughput of each branch = ratio of probabilities

𝑇𝑃𝑇!
𝑝!

=
𝑇𝑃𝑇"
𝑝"

ã Throughput of conditional structure:
l Divide each branch’s canopy graph by its probability pi
l Compute intersection of scaled canopy graphs

ã “Bursty” inputs cause additional bottlenecks (see ICCAD-08 paper for details)
31

split MUX
branch0
branch1
Boolean

Conditional Composition of branch0 and branch1 Example:
p0 = 2/3 and p1 = 1/3

2 items enter branch0
è

1 item enters branch1

Step 1) uniform scaling: enlarge each branch’s canopy graph
Example: p0 = 2/3 and p1 = 1 - p0 = 1/3

Step 2) intersection: finds system-level performance

3) Conditional Composition (cont’d)

32

0.6

0.4

0.2

00 10 20 30

Branch0 Performance
assume p0 = 2/3

occupancy

0.6

0.4

0.2

00 10 20 30

Branch1 Performance
assume p1 = 1/3

occupancy

original canopy
graph

scaled by dividing
by 2/3

scaled by dividing
by 1/3

split merge
branch0
branch1
Boolean

Conditional Composition of branch0 and branch1

original canopy
graph

0.6

0.4

0.2

00 10 20 30

Conditional
composition

4) Iterative Loop Composition
ã Operation invariants under composition:

l Each item passes through the loop multiple times
l Loop can handle multiple items simultaneously

ã Throughput of composition
l # data items processed decreases as iteration count increases
⇒ Scale down based on expected number of iterations

33

Occupancy

Th
ro

ug
hp

ut

overall loop
loop

composition

divide
by 3.33 loop body

Throughput vs. Occupancy
with Expected Iterations = 3.33

Loop
interface

Loop composition

loop body

Analysis: Benchmark Examples
ã Analysis algorithm demonstrated on 8 benchmarks

l Chosen to represent a variety of circuit constructs

ã Evaluated several circuit implementations of some
l Naive implementation vs. hand-optimized version
l Different choice models: uniform random vs. correlated

34

Composition Type
Example Parallel Sequential Conditional Iteration
CORDIC ✔ ✔ ✔

CRC ✔ ✔

DIFFEQ ✔ ✔ ✔

GCD ✔ ✔

Ray-tracing ✔ ✔ ✔

MULT ✔ ✔

JPEG ✔ ✔ ✔ ✔

Performance Analysis: Results
ã Total of 12 different circuit examples tested

l Error < 4% for all examples, runtime ≤ 10 ms for all examples

35

Size Throughput Error Runtime
Example Version # stages simulated predicted (%) (ms)

CORDIC
original 31 90.9 90.9 0.00 ~10
optimized 44 167 167 0.00 ~10
bursty inputs 44 83 83 0.00 ~10

CRC
original 23 292 286 2.05 ~10
optimized 27 352 357 1.42 ~10
bursty inputs 27 305 300 1.64 ~10

DIFFEQ original 10 18.3 18.2 0.55 <10
GCD original 21 49 50 2.04 ~10
Ray-

tracing
original 21 161 167 3.73 ~10
optimized 166 222 222 0.00 ~10

MULT
original 13 38.7 38.4 0.78 <10
optimized 21 167 167 0.00 <10

Performance Analysis: Summary

ã Fast: restriction to hierarchical systems yielded fast runtimes
l Divide-and-conquer approach with linear runtime
l Modular canopy graph analysis for many constructs

Ø Sequential, parallel, conditional, and loop
l Expressive subset: modeled real-world applications

Ø CORDIC, CRC, ray intersection algorithm, etc.

ã Accurate: tested on several many non-trivial examples
l Throughput estimates within 4% of simulation results

36

Pi
pe

lin
e

Th
ro

ug
hp

ut

Pipeline Occupancy

“Canopy Graph”
circuit hierarchy system-level performance

References
ã Gennette Gill. Analysis and Optimization for Pipelined Asynchronous Systems. PhD

thesis. UNC Chapel Hill. 2010.

ã Gennette Gill and Montek Singh. “Performance Estimation and Slack Matching for
Pipelined Asynchronous Architectures with Choice.” ICCAD 2008.

ã Montek Singh and Steven Nowick. “MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pipelines.” ICCD 2001.

ã Montek Singh and Steven Nowick. “MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines.” TVLSI 2007.

ã Gennette Gill, J. Hansen, A. Agiwal, L. Vicci and M, Singh. "A High-Speed GCD
Chip: A Case Study in Asynchronous Design." ISVLSI 2009.

37

