Dataflow Design

Montek Singh
UNC Chapel Hill

ASYNC 2024 Summer School
Week 1: July 1

% Dataflow basics
e Pipelining primitives

% Performance estimation
e "Canopy Graph” analysis

Dataflow basics

What is Dataflow?

% Graphical description of operations in a computation

% Sequencing is determined by data dependencies
e inputs trigger a function
e ... instead of an overall control structure

% Intuitive, natural representation for:

e data-driven algorithms, e.g. DSPs
e stream processing

%* Implementation is not necessarily asynchronous
e but async is often a natural match

Example: multiply-accumulate

Motivation: linear algebra core
operation

y—ax+y (SAXPY)

If you care about DSP, HPC,
Al/deep learning... this is a useful
kernel to implement

[Original slide by Benjamin Hill] 5

Dataflow primitives

% Reading from all input
channels, writing to all output
channels

% Reading from 1, writing to

one-of-/V (demux)
% Reading from one-of-/A, writing
to 1 (mux / conditional merge) @‘

¥ Other misc useful blocks: l l

e initialization \ 4
® source/sink SOURCE SINK MERGE
e merging/arbitration

¥ |

[Modified from original slide by Benjamin Hill] 6

BUFFER

% Transmit token from input to output
with storage and handshaking flow
control i‘
e one pipeline stage (FIFO stage)
0

e latch + handshake control -

ut

Also known as: slack buffer, one-place FIFO, latch *[In?x; Out!x]

[Original slide by Benjamin Hill] /

FORK / COPY

Copy input token to multiple
destinations

Outy, Out,_;

Also known as: n-way link *[In?x; Outy!X, .., Out,.,!X]

[Original slide by Benjamin Hill] 8

JOIN / FUNCTION

Read values from all inputs,
compute result and send on
output dle e

Example functions: arithmetic,
logic, decoding, etc.

Out

*[Ing?argy,, In;?arg,, .. , In,?arg..;;
Out!func(argy,arg,,..,arg, 1)

]
Also known as: OPERATOR

[Original slide by Benjamin Hill] 9

Multiplexer (MUX)

Select one input to send to output
based on control signal
e ignore other input (do not consume)
e generalizable to NVinputs

Not to be confused with
combinational MUX: out

® same basic behavior, but this is a
dataflow operator

*[C?c;
e unused input channel is not [c=0 -> Iny?x
consumed; its data is still available 5] c=1 -> Iny?X
" . Out!x
Also known as: controlled merge, conditional join]

[Original slide by Benjamin Hill] 10

DEMUX

Steer/route input to one of two
outputs

. I
e based on value of control signal }
e generalizable to NV outputs
C
f oo \o=
Out, Out,

*[In?x, C?c;
[c=0 -> Outylx

[] c=1 -> Outy!x
Also known as: SPLIT 1

]

[Original slide by Benjamin Hill] 11

Initial token buffer

Send one initial value token, then
behave as a normal buffer

Also known as: INITIALIZER

[Original slide by Benjamin Hill]

Out

Out!value; *[In?x; Outl!x]

12

SOURCE

Repeatedly send tokens with same
constant value

SOURCE

(value)

\

Out

Also known as: bit/token generator *[Out!value]

[Original slide by Benjamin Hill] 13

SINK

Consume and discard input token

e Not particularly useful by itself, but in
combination with other dataflow primitives i‘
SINK
Also known as: (bit) bucket *[In?value]

[Original slide by Benjamin Hill] 14

Uncontrolled merge

Combine two input streams to one
output

Depending on system design, selection
is either:

e deterministic — only one input will arrive
at a time (ensured by environment)

e non-deterministic — requires arbitration
to choose if both inputs can arrive close
together

Also known as: MIXER, JOIN

[Original slide by Benjamin Hill]

Ing Ing

! 3§

MERGE

}

Out

[] #Inl '> Inl?X

] 2
Out!x

15

Recap: Dataflow primitives

% Reading from all input
channels, writing to all output
channels

% Reading from 1, writing to

one-of-/V (demux)
% Reading from one-of-/A, writing
to 1 (mux / conditional merge) @‘

¥ Other misc useful blocks:
vy 1

e initialization
e source/sink SOURCE SINK MERGE

e merging/arbitration / l

[Modified from original slide by Benjamin Hill] 16

Some useful design patterns

Wagging or Multithreading

Problem: Slow function block

Solution: Duplicate function
block and interleave data
between them

= Improves throughput at the
cost of area

Example: large arithmetic block
where it is difficult to add internal

pipelining

Not just for compute, could also
be storage (e.qg. tree FIFO)

[Original slide by Benjamin Hill]

Out

18

Resource sharing

Idea: share one expensive or
unique resource between
multiple users

Improves area at the cost of
throughput

SHARED
FUNCTIO

[Original slide by Benjamin Hill] 19

IF statement

Useful for high-level synthesis

In condition

Shown with FUNCTION blocks
but can also be other dataflow
graphs (e.g. nested IF
statements)

executed executed
if false if true

[Original slide by Benjamin Hill] 20

WHILE loop

Can also implement other
loop constructs with a
similar pattern

In

0 1
UX
continue

i loop
l loop? I body
DEMUX
(%] 1
Out

[Original slide by Benjamin Hill] 21

Performance Estimation

Performance Basics: pipeline stages

req
o —
com&l’er% conﬁok&‘_ controller
I +

ch |8

N
=
i Q
é,.l_mogl_l_) & logic

Cycle time in an asynchronous pipeline

LAL,

Latch

\ 4

LAL,

Each stage characterized by three delays:

e Forward latency, L,

» Time for data to propagate forward
e Reverse latency, L.

» Time for a stage to receive and process ack

> Time for a ‘hole’ to travel backward
e Cycletime, T = L+ L,
» Throughput, tpt = 1 / cycle time

\ 4

LAL,

An abstracted view of the pipeline

23

Input: pipelined system-level implementation

—
<; —))I;
—
—
S
—
% Motivation: crucial part of an optimizing design flow

e Used repeatedly in an optimization loop
® Requires low runtime and good accuracy

-Output: system-level throughput

24

Early work: Pipeline Rings

1/ 77
S N Canopy Graph
= A limited by
= /3 slowest stage
T l %D Sy A— B, ... NP g
©) 2 .
= 1F . 1/R
= | S
N ,/ S, v
«— S| ,« data hole™.
-~ limited limited ~.
T T T T 1T T 1 1 1
0 N-2 N-1 N

I 2 Ring Occupancy

Classic work by T. Williams and M. Horowitz [1SSCC-91]
Ring throughput depends on its occupancy (#items)

For small number of items: under-utilization limits throughput

For small number of holes: congestion limits throughput

[

[

e Throughput also limited by the slowest stage
o

Graph is a convex shape: “Canopy Graph”
» [term coined by Singh et al. ASYNC-02 and Gill/Singh ICCAD-08]

25

Canopy Graphs for linear pipeline

S TN e limited by
Left Right o | e AL ..\....?.'.9.‘."’...95..’?...??39@
Venv. [LI LI M env S p s
3 P AW . 1R
.. OD ‘,// \\\ 5
-E . data hole -~
-~ limited limited ~.

% Canopy graph: also useful approximation for /inear pipelines

e In steady state: linear pipeline can be modeled as ring
» Rate at which data enters and leaves is identical
> [.e. one token leaves = one token enters 2%

Key Idea: Generalize Canopy Graphs

¥ Goal: Find the system-level throughput for an async dataflow system

e Use a modular, “divide-and-conquer” method

% Challenge: Throughput is not composable
e Complex interdependencies dictate throughput

% Take problem to higher dimension to make decomposable
e One-dimensional throughput is not composable
e Two-dimensional throughput-occupancy pairs are

module 1

Com' i sed throughput

Throughput

module 2

Occupancy 27

Performance Analysis: Method

% Modular method for performance analysis
e Exploits system hierarchy with “divide-and-conquer” method

e First: calculate canopy graph at each leaf node
» Each leaf node is a single stage

e Next: compose canopy graphs at each level of the hierarchy
e Finally: canopy graph for root node gives system-level performance

% Requires composition algorithm for common circuit structures
e Parallel, sequential, conditional, and iterative

o+ IIC 7
5 anopy Gra
2 py Graph
- < S L
compositions of A =) 4
= / \\
stages (SN [R—— - —
- N
— p A,
) // \\
: UNT c y \\\
single pipeline ‘ . : ‘ g /, -
stages = | .

Pipeline Occupancy

Gennette Gill and Montek Singh, “Performance Estimation and Slack Matching for Pipelined Asynchronous
Architectures with Choice,” International Conference on Computer-Aided Design (ICCAD) (November 2008).

28

1) Parallel Composition

Parallel structures [Lines98]
e Data copied at fork
e A and B compute in parallel

Pipelined Component A _ ioin
i(irk< >J_, e Results recombined at join

Parallel Composition of A and B

Pipelined Component B

Operation invariants under
composition:
1) # of items in each branch equal

Canopy Graph of Composed Structure 2) Branches have same throughput

- Component A

a Q‘p . ComponentB Throughput of structure:

S y W e Intuition: at each occupancy,

_g AN e > throughput limited by slower

=l N branch

é) a Composition _ . = Intersection of canopy graphs of
o ofAandB N\ .. A and B

Pipeline Occupancy

29

2) Sequential Composition

Sequential Structures [Lines98]

e Data transmitted through A,
then through B

Sequential Composition of A and B

—> A —» B —

(Pipelined Component B
Pipelined Component A

Canopy Graph of Composed Structure
ComenentA Component B

Ll
.
I O
0
o s
& .
. .
.,

.
I LS
A
0
0
Q .
0

Composition
of Aand B

Pipeline Throughput

Pipeline' Occupancy

Operation invariants under
composition:
1) Find total # items: sum
of # items in both pipes
2) Throughput A = Throughput B
3) Max throughput: limited by
slower pipeline

Throughput of structure:

= “horizontal sum" of canopy
graphs of A and B

e At each throughput, add the
occupancies of the two

pipelines 30

3) Conditional Composition

Conditional Composition of branch, and branch, Example:

p0 = 2/3 and pl =1/3

branch,
— split < > MUX — 2items eE)ter branch,

branch,
\ / 1 item enters branch;

Boolean
* Operation invariants under composition:
e Ratio of # items in each branch = ratio of probabilities

Occupancy, Occupancy,

Po P1
e Ratio of throughput of each branch = ratio of probabilities

TPT, TPT,

Po P1

¥ Throughput of conditional structure:
e Divide each branch’s canopy graph by its probability p;
e Compute intersection of scaled canopy graphs

* “Bursty” inputs cause additional bottlenecks (see ICCAD-08 paper for details)
31

3) Conditional Composition (cont'd)

Conditional Composition of branch, and branch,

branch,
— split < >7Lmer €
\ branch,

Boolean

= Step 1) uniform scaling: enlarge each branch’s canopy graph
Example: pg=2/3and p;=1-p=1/3
= Step 2) intersection: finds system-level performance

Branch0 Performance Branch1 Performance

~ Conditional —
assume p0 =2/3 0.6 composition 06 assume p1=1/3
— scaled by dividjng caled by dividing /’\
0.4 by 2/3.4 by 1/3 0.4
0.2 original canppy 0.2
' graph original canopy A

0 10 20 30 00— 0 10 20 30

occupancy OcCupancy 32

4) Iterative Loop Composition

% Operation invariants under composition:
e Each item passes through the loop multiple times
e Loop can handle multiple items simultaneously

% Throughput of composition
e # data items processed decreases as iteration count increases

= Scale down based on expected number of iterations

Throughput vs. Occupancy

with Expected Iterations = 3.33

Loop composition divide
" by 3.33

Loop 2

interface 5

)

(@]

c

loop body =

N\

loop body

loop
composition

:

Occupancy

33

Analysis: Benchmark Examples

% Analysis algorithm demonstrated on 8 benchmarks
e Chosen to represent a variety of circuit constructs

Composition Type

Example | Parallel | Sequential | Conditional | Iteration
CORDIC v v v
CRC v v
DIFFEQ v v v
GCD v v
Ray-tracing v v v
MULT v v
JPEG v v v v

% Evaluated several circuit implementations of some
e Naive implementation vs. hand-optimized version

e Different choice models: uniform random vs. correlated

34

Performance Analysis: Results

% Total of 12 different circuit examples tested
e Error < 4% for all examples, runtime £ 10 ms for all examples

Size Throughput Error | Runtime
Example Version # stages | simulated | predicted (%) (ms)
original 31 90.9 90.9 0.00 ~10
CORDIC | optimized 44 167 167 0.00 ~10
bursty inputs 44 83 83 0.00 ~10
original 23 292 286 2.05 ~10
CRC | optimized 27 352 357 1.42 ~10
bursty inputs 27 305 300 1.64 ~10
DIFFEQ | original 10 18.3 18.2 0.55 <10
GCD | original 21 49 50 2.04 ~10
Ray- | original 21 161 167 3.73 ~10
tracing | optimized 166 222 222 0.00 ~10
MULT originél 13 38.7 38.4 0.78 <10
optimized 21 167 167 0.00 <10

35

Performance Analysis: Summary

circuit hierarchy system-level performance

5[“Canopy Graph”
S ano ra
] py Grap
i o N /
(@)} 4
> 7N
O / N
- 3| AN
N ’ .
- p N
(D) // N
(o Vs A
3| s
(@l /’ .
ok >

Pipeline Occupancy

% Fast: restriction to hierarchical systems yielded fast runtimes
e Divide-and-conquer approach with linear runtime
e Modular canopy graph analysis for many constructs
» Sequential, parallel, conditional, and loop

e Expressive subset: modeled real-world applications
» CORDIC, CRC, ray intersection algorithm, etc.

% Accurate: tested on several many non-trivial examples

e Throughput estimates within 4% of simulation results
36

References

*

Gennette Gill. Analysis and Optimization for Pipelined Asynchronous Systems. PhD
thesis. UNC Chapel Hill. 2010.

Gennette Gill and Montek Singh. "Performance Estimation and Slack Matching for
Pipelined Asynchronous Architectures with Choice.” ICCAD 2008.

Montek Singh and Steven Nowick. "MOUSETRAP: Ultra-High-Speed Transition-
Signaling Asynchronous Pjpelines.” 1CCD 2001.

Montek Singh and Steven Nowick. "MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines.” TVLSI 2007.

Gennette Gill, J. Hansen, A. Agiwal, L. Vicci and M, Singh. A High-Speed GCD
Chip: A Case Study in Asynchronous Design."” 1SVLSI 2009.

37

