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% Dataflow basics
e Pipelining primitives

% Performance estimation
e "Canopy Graph” analysis



Dataflow basics



What is Dataflow?

% Graphical description of operations in a computation

% Sequencing is determined by data dependencies
e inputs trigger a function
e ... instead of an overall control structure

% Intuitive, natural representation for:

e data-driven algorithms, e.g. DSPs
e stream processing

%* Implementation is not necessarily asynchronous
e but async is often a natural match



Example: multiply-accumulate

Motivation: linear algebra core
operation

y—ax+y (SAXPY)

If you care about DSP, HPC,
Al/deep learning... this is a useful
kernel to implement
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Dataflow primitives

% Reading from all input
channels, writing to all output
channels

% Reading from 1, writing to

one-of-/V (demux)
% Reading from one-of-/A, writing
to 1 (mux / conditional merge) @‘

¥ Other misc useful blocks: l l

e initialization \ 4
® source/sink SOURCE SINK MERGE
e merging/arbitration

¥ |
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BUFFER

% Transmit token from input to output
with storage and handshaking flow
control i‘
e one pipeline stage (FIFO stage)
0

e latch + handshake control -

ut

Also known as: slack buffer, one-place FIFO, latch *[In?x; Out!x]
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FORK / COPY

Copy input token to multiple
destinations

Outy, Out,_;

Also known as: n-way link *[In?x; Outy!X, .., Out,.,!X]
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JOIN / FUNCTION

Read values from all inputs,
compute result and send on
output dle e

Example functions: arithmetic,
logic, decoding, etc.

Out

*[ Ing?argy,, In;?arg,, .. , In,?arg..;;
Out!func(argy,arg,,..,arg, 1)

]
Also known as: OPERATOR
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Multiplexer (MUX)

Select one input to send to output
based on control signal
e ignore other input (do not consume)
e generalizable to NVinputs

Not to be confused with
combinational MUX: out

® same basic behavior, but this is a
dataflow operator

*[C?c;
e unused input channel is not [ c=0 -> Iny?x
consumed; its data is still available 5] c=1 -> Iny?X
" . Out!x
Also known as: controlled merge, conditional join ]
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DEMUX

Steer/route input to one of two
outputs

. I
e based on value of control signal }
e generalizable to NV outputs
C
f oo \o=
Out, Out,

*[In?x, C?c;
[ c=0 -> Outylx

[] c=1 -> Outy!x
Also known as: SPLIT 1

]
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Initial token buffer

Send one initial value token, then
behave as a normal buffer

Also known as: INITIALIZER

[Original slide by Benjamin Hill]

Out

Out!value; *[In?x; Outl!x]
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SOURCE

Repeatedly send tokens with same
constant value

SOURCE

(value)

\

Out

Also known as: bit/token generator *[Out!value]
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SINK

Consume and discard input token

e Not particularly useful by itself, but in
combination with other dataflow primitives i‘
SINK
Also known as: (bit) bucket *[In?value]

[Original slide by Benjamin Hill] 14



Uncontrolled merge

Combine two input streams to one
output

Depending on system design, selection
is either:

e deterministic — only one input will arrive
at a time (ensured by environment)

e non-deterministic — requires arbitration
to choose if both inputs can arrive close
together

Also known as: MIXER, JOIN

[Original slide by Benjamin Hill]

Ing Ing

! 3§

MERGE

}

Out

[] #Inl '> Inl?X

] 2
Out!x

15



Recap: Dataflow primitives

% Reading from all input
channels, writing to all output
channels

% Reading from 1, writing to

one-of-/V (demux)
% Reading from one-of-/A, writing
to 1 (mux / conditional merge) @‘

¥ Other misc useful blocks:
vy 1

e initialization
e source/sink SOURCE SINK MERGE

e merging/arbitration  / l
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Some useful design patterns



Wagging or Multithreading

Problem: Slow function block

Solution: Duplicate function
block and interleave data
between them

= Improves throughput at the
cost of area

Example: large arithmetic block
where it is difficult to add internal

pipelining

Not just for compute, could also
be storage (e.qg. tree FIFO)

[Original slide by Benjamin Hill]
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Resource sharing

Idea: share one expensive or
unique resource between
multiple users

Improves area at the cost of
throughput

SHARED
FUNCTIO

[Original slide by Benjamin Hill] 19



IF statement

Useful for high-level synthesis

In condition

Shown with FUNCTION blocks
but can also be other dataflow
graphs (e.g. nested IF
statements)

executed executed
if false if true
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WHILE loop

Can also implement other
loop constructs with a
similar pattern

In

0 1
UX
continue

i loop
l loop? I body
DEMUX
(%] 1
Out
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Performance Estimation



Performance Basics: pipeline stages

req
o —
com&l’er% conﬁok&‘_ controller
I +

ch |8

N
=
i Q
é,.l_mogl_l_) & logic

Cycle time in an asynchronous pipeline

LAL,

Latch

\ 4

LAL,

Each stage characterized by three delays:

e Forward latency, L,

» Time for data to propagate forward
e Reverse latency, L.

» Time for a stage to receive and process ack

> Time for a ‘hole’ to travel backward
e Cycletime, T = L+ L,
» Throughput, tpt = 1 / cycle time

\ 4

LAL,

An abstracted view of the pipeline
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Input: pipelined system-level implementation

—
<; —) )I;
—
—
S
—
% Motivation: crucial part of an optimizing design flow

e Used repeatedly in an optimization loop
® Requires low runtime and good accuracy

-Output: system-level throughput
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Early work: Pipeline Rings

1/ 77
S N Canopy Graph
= A limited by
= /3 slowest stage
T l %D ........................ Sy A— B, ... NP g
©) 2 .
= 1F . 1/R
= | S
N ,/ S, v
«— S| ,« data hole™.
-~ limited limited  ~.
T T T T 1T T 1 1 1
0 N-2 N-1 N

I 2 Ring Occupancy

Classic work by T. Williams and M. Horowitz [1SSCC-91]
Ring throughput depends on its occupancy (#items)

For small number of items: under-utilization limits throughput

For small number of holes: congestion limits throughput

[

[

e Throughput also limited by the slowest stage
o

Graph is a convex shape: “Canopy Graph”
» [term coined by Singh et al. ASYNC-02 and Gill/Singh ICCAD-08]
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Canopy Graphs for linear pipeline

S TN e limited by
Left Right o | e AL ..\....?.'.9.‘."’...95..’?...??39@
Venv. [ LI LI M env S p s
3 P AW . 1R
........................................ OD ‘,// \\\ 5
-E . data hole -~
-~ limited limited  ~.

% Canopy graph: also useful approximation for /inear pipelines

e In steady state: linear pipeline can be modeled as ring
» Rate at which data enters and leaves is identical
> [.e. one token leaves = one token enters 2%




Key Idea: Generalize Canopy Graphs

¥ Goal: Find the system-level throughput for an async dataflow system

e Use a modular, “divide-and-conquer” method

% Challenge: Throughput is not composable
e Complex interdependencies dictate throughput

% Take problem to higher dimension to make decomposable
e One-dimensional throughput is not composable
e Two-dimensional throughput-occupancy pairs are

module 1

Com' i sed throughput

Throughput

module 2

Occupancy 27



Performance Analysis: Method

% Modular method for performance analysis
e Exploits system hierarchy with “divide-and-conquer” method

e First: calculate canopy graph at each leaf node
» Each leaf node is a single stage

e Next: compose canopy graphs at each level of the hierarchy
e Finally: canopy graph for root node gives system-level performance

% Requires composition algorithm for common circuit structures
e Parallel, sequential, conditional, and iterative

o+ IIC 7
5 anopy Gra
2 py Graph
- < S L
compositions of A =) 4
= / \\
stages (SN [R—— - —
- N
— p A,
) // \\
: UNT c y \\\
single pipeline ‘ . : ‘ g /, -
stages = | .

Pipeline Occupancy

Gennette Gill and Montek Singh, “Performance Estimation and Slack Matching for Pipelined Asynchronous
Architectures with Choice,” International Conference on Computer-Aided Design (ICCAD) (November 2008).
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1) Parallel Composition

Parallel structures [Lines98]
e Data copied at fork
e A and B compute in parallel

Pipelined Component A \_ ioin
i(irk< >J_, e Results recombined at join

Parallel Composition of A and B

Pipelined Component B

Operation invariants under
composition:
1) # of items in each branch equal

Canopy Graph of Composed Structure 2) Branches have same throughput

- Component A

a Q‘p . ComponentB  Throughput of structure:

S y W e Intuition: at each occupancy,

_g AN e > throughput limited by slower

=l N branch

é) a Composition \_ . = Intersection of canopy graphs of
o ofAandB N\ .. A and B

Pipeline Occupancy
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2) Sequential Composition

Sequential Structures [Lines98]

e Data transmitted through A,
then through B

Sequential Composition of A and B

—> A —» B —

( Pipelined Component B
Pipelined Component A

Canopy Graph of Composed Structure
ComenentA Component B

Ll
.
I O
0
o s
& .
. .
.,

.
I LS
A
0
0
Q .
0

Composition
of Aand B

Pipeline Throughput

Pipeline' Occupancy

Operation invariants under
composition:
1) Find total # items: sum
of # items in both pipes
2) Throughput A = Throughput B
3) Max throughput: limited by
slower pipeline

Throughput of structure:

= “horizontal sum" of canopy
graphs of A and B

e At each throughput, add the
occupancies of the two

pipelines 30



3) Conditional Composition

Conditional Composition of branch, and branch, Example:

p0 = 2/3 and pl =1/3

branch,
— split < > MUX —  2items eE)ter branch,

branch,
\ / 1 item enters branch;

Boolean
* Operation invariants under composition:
e Ratio of # items in each branch = ratio of probabilities

Occupancy, Occupancy,

Po P1
e Ratio of throughput of each branch = ratio of probabilities

TPT, TPT,

Po P1

¥ Throughput of conditional structure:
e Divide each branch’s canopy graph by its probability p;
e Compute intersection of scaled canopy graphs

* “Bursty” inputs cause additional bottlenecks (see ICCAD-08 paper for details)
31



3) Conditional Composition (cont'd)

Conditional Composition of branch, and branch,

branch,
— split < >7Lmer €
\ branch,

Boolean

= Step 1) uniform scaling: enlarge each branch’s canopy graph
Example: pg=2/3and p;=1-p=1/3
= Step 2) intersection: finds system-level performance

Branch0 Performance Branch1 Performance

~ Conditional —
assume p0 =2/3 0.6 composition 06 assume p1=1/3
— scaled by dividjng caled by dividing /’\
0.4 by 2/3.4 by 1/3 0.4
0.2 original canppy 0.2
' graph original canopy A

0 10 20 30 00— 0 10 20 30

occupancy OcCupancy 32



4) Iterative Loop Composition

% Operation invariants under composition:
e Each item passes through the loop multiple times
e Loop can handle multiple items simultaneously

% Throughput of composition
e # data items processed decreases as iteration count increases

= Scale down based on expected number of iterations

Throughput vs. Occupancy

with Expected Iterations = 3.33

Loop composition divide
" by 3.33

Loop 2

interface 5

)

(@]

c

loop body =

N\

loop body

loop
composition

:

Occupancy
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Analysis: Benchmark Examples

% Analysis algorithm demonstrated on 8 benchmarks
e Chosen to represent a variety of circuit constructs

Composition Type

Example | Parallel | Sequential | Conditional | Iteration
CORDIC v v v
CRC v v
DIFFEQ v v v
GCD v v
Ray-tracing v v v
MULT v v
JPEG v v v v

% Evaluated several circuit implementations of some
e Naive implementation vs. hand-optimized version

e Different choice models: uniform random vs. correlated
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Performance Analysis: Results

% Total of 12 different circuit examples tested
e Error < 4% for all examples, runtime £ 10 ms for all examples

Size Throughput Error | Runtime
Example Version # stages | simulated | predicted (%) (ms)
original 31 90.9 90.9 0.00 ~10
CORDIC | optimized 44 167 167 0.00 ~10
bursty inputs 44 83 83 0.00 ~10
original 23 292 286 2.05 ~10
CRC | optimized 27 352 357 1.42 ~10
bursty inputs 27 305 300 1.64 ~10
DIFFEQ | original 10 18.3 18.2 0.55 <10
GCD | original 21 49 50 2.04 ~10
Ray- | original 21 161 167 3.73 ~10
tracing | optimized 166 222 222 0.00 ~10
MULT originél 13 38.7 38.4 0.78 <10
optimized 21 167 167 0.00 <10

35




Performance Analysis: Summary

circuit hierarchy system-level performance

5[ “Canopy Graph”
S ano ra
] py Grap
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Pipeline Occupancy

% Fast: restriction to hierarchical systems yielded fast runtimes
e Divide-and-conquer approach with linear runtime
e Modular canopy graph analysis for many constructs
» Sequential, parallel, conditional, and loop

e Expressive subset: modeled real-world applications
» CORDIC, CRC, ray intersection algorithm, etc.

% Accurate: tested on several many non-trivial examples

e Throughput estimates within 4% of simulation results
36
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