Asynchronous design methodology using ACT with commercial tools

Filip Hormot (Filip.Hormot@infineon.com),
Marco Scarici (Marco.Scarici@infineon.com),
David Cox (David.Cox@infineon.com)
Introduction

Traditional setup for an analog project

- Analog on top level projects → Digital core included into the analog project
 - Large analog area supported by a small digital core
 - Minimal functionality necessary (Start-up, fault management, NVM, etc.)
Introduction (cont’d)
Inclusion of ACT where to replace a standard digital flow

- Inclusion of ACT with minimal change to the existing processes
- Stability, re-use of existing processes and workflows
Digital design workflow
Concept to netlist methodology for digital design

- Integration of ACT into the design methodology

- Design of and asynchronous circuits → V-model
 - Requirements are set **top-down**
 - Design is done **bottom-up**
 - Iteration of steps for specification violations

Conceptual Design & Architecture

Modular division (re-use potential)

Design and verification of each module

Hierarchical assembly and verification

Netlist export and verification in the analog domain
Synthesis of a CHP process into the analog domain
Overview of the process

https://avlsi.csl.yale.edu/act/doku.php?id=intro_example:cadence_import
Synthesis of a CHP process into the analog domain (cont’d)
Challenges and learning cycles

- Refactoring
 - The generated Verilog netlist is not immediately ready to use
 - Mangle character and prefix removal
 - Removal of error generators (reg/wire definitions)
 - Removal of wrappers → Now available in interact
 - Block reset as a pin → Now available in interact
 - Generated gate I/O naming → Now available in config files

- Import of the control circuitry
 - Config file initial setup → Import all with keeper, IO naming, etc.
 - Gates generated in interact are not the only required gates
 - Additional gates are required to be manually synthesized from the std library
 - Spice netlists do not support component sub-models → Spectre might be better
 - Added effort by additional export procedure (one time activity)
 - No bulk export

- Compliance with our standard gate library
 - Use of cell name mapping → Ongoing
Summary and Next steps

- **Summary**
 - Analog on top level projects
 - Analog/Digital environments are separated
 - Digital circuitry included in the analog domain
 - Inclusion of ACT into existing workflows
 - Re-use of existing structures
 - IP inclusion through Verilog netlists

- **Next steps**
 - Place&route investigations and integration into the methodology
 - Reduction of refactoring effort through technology configuration files
 - Alignment of synthesis rules with design methodologies and (naming) conventions
 - Formalized & automated unit testing
 - Enabling mixed-signal verification domains (using actsim)
In case of inquiries:
- Filip Hormot (Filip.Hormot@infineon.com),
- Marco Scarici (Marco.Scarici@infineon.com),
- David Cox (David.Cox@infineon.com)

Thank you for your attention!