
Dataflow asynchronous design
and pipeline performance

Benjamin Hill

benjamin.hill@intel.com

ASYNC Summer School 2022

mailto:benjamin.hill@intel.com

Legal Information

​Intel does not control or audit third-party data. You should consult other sources to evaluate
accuracy.​​​

Your costs and results may vary.

Results have been estimated or simulated

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

​No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.​​

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others​.​​

Asynchronous circuits

• At a behavioral level, only dipping down to explain motivation for
important concepts (we’ll get to lower-level details next week)

• Token = [DATA] + VALIDITY + FLOW CONTROL

• Processes communicate on Channels by exchanging Tokens

• Parallel (processes) is free; sequencing is engineered/expensive

Dataflow computation

• Structural, graphical way of describing computation

• Useful abstraction, intuitive way to convey design intent

• Not necessarily asynchronous, though some key advantages as a
natural mapping

Example: multiply-accumulate

Motivation: linear algebra core operation

y ← αx + y (SAXPY)

If you care about DSP, HPC, AI/deep
learning… this is a useful kernel to
implement

MULTIPLY

ADD
y0
(0)

α x

y

FUNCTION

Read values from all inputs, compute result and
send on output

Example functions: arithmetic, logic, decoding, etc.

In0

FUNCTION

Inn-1

Out

...

*[In0?arg0, In1?arg1, … , Inn-1?argn-1;
Out!func(arg0,arg1,…,argn-1)

]Also known as: OPERATOR

Multiplexer (MUX)

Select one input to send to output
based on control signal; ignore other input

Not to be confused with combinational MUX:
same basic behavior, but this is a dataflow operator

C0 1

MUX

In0 In1

Out

*[C?c;
[c=0 -> In0?x
[] c=1 -> In1?x
];
Out!x
]Also known as: controlled merge, conditional join

DEMUX

Steer input to one of two outputs,
based on value of control signal

Out0

DEMUX
0 1

In

Out1

C

*[In?x, C?c;
[c=0 -> Out0!x
[] c=1 -> Out1!x
]

]Also known as: SPLIT

COPY

Copy input token to multiple destinations

Often not drawn explicitly; all fan-out in
dataflow graph requires a COPY

In

COPY

Out0 Outn-1

...

In

Out0 Outn-1
...

*[In?x; Out0!x, …, Outn-1!x] Also known as: FORK, n-way link

BUFFER

Transmit token from input to output with storage
and handshaking flow control

Important for performance, but often not drawn
explicitly in static dataflow diagrams

In

Out

BUFFER

*[In?x; Out!x] Also known as: slack buffer, one-place FIFO, latch

Initial token buffer

Send one initial value token,
then behave as a normal buffer

value

In

Out

Out!value; *[In?x; Out!x] Also known as: INITIALIZER

SOURCE

Repeatedly send tokens with same constant value

Out

SOURCE
(value)

*[Out!value] Also known as: bit/token generator

SINK

Consume and discard input token

Not particularly useful by itself, but in
combination with other dataflow primitives

SINK

In

*[In?value] Also known as: (bit) bucket

Uncontrolled merge

Combine two input streams to one output

Depending on system design, selection is either:
• deterministic – only one input will be used at a time

• non-deterministic – requires arbitration to choose

In0 In1

Out

*[[#In0 -> In0?x
[] #In1 -> In1?x
];
Out!x

]Also known as: MIXER, JOIN

Dataflow building blocks

FUNCTION

SOURCE SINKBUFFER COPY

...

DEMUX MUX MERGE

Example: T-gate

In

Out

C

SINK

DEMUX
0 1

Transformation: “Multithreading”

Idea: replicate dataflow elements and
interleave data between them

Improves throughput at the cost of
area

Example: large arithmetic block where
it is difficult to add internal pipelining

Not just for compute, could also be
storage (e.g. tree FIFO)

Out

DUPLICATED
FUNCTION

DUPLICATED
FUNCTION

DEMUX
0 1

In C

0 1
MUX

BUFFER

Transformation: time sharing

Idea: share one expensive or unique
resource between multiple users

Improves area at the cost of
throughput

SHARED
FUNCTION

DEMUX
0 1

In0 C

0 1
MUX

In1

Out0 Out1

Building block: IF statement

Useful for high-level synthesis

Shown with FUNCTION blocks but
can also be other dataflow graphs
(e.g. nested IF statements)

Out

executed
if false

executed
if true

DEMUX
0 1

In condition

0 1
MUX

Building block: WHILE loop

Can also implement other loop
constructs with a similar pattern

loop body

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

0

Multiply-accumulate revisited

Motivation: linear algebra core operation

y ← αx + y (SAXPY)

Works well for one vector, but how about
the next? Want to reuse this MAC unit
without a full system reset

MULTIPLY

ADD
y0
(0)

α x

y

Multiply-accumulate revisited

One solution:

Add “clear” signal to reset the
accumulator, send along with
each new set of input data

MULTIPLY

ADD

y0
(0)

α x

y

SOURCE

(0)

SINK

D
E
M
U
X

0

1

0

1

M
U
X

clear

Pipeline performance

Defining asynchronous performance

Latency

Throughput

Average case performance

Computer architecture principle:
“Make the common case fast”

Works especially well in
asynchronous design, since
performance is only penalized when
a given unit is used

Example: divide in a processor ALU

Out

FAST
FUNCTION

SLOW
FUNCTION

In

Performance intuition
Whiteboard demonstration

SOURCE SINK

SOURCE SINK

F
U
N
C
T
I
O
N

SOURCE SINK

F
U
N
C
T
I
O
N

Simulation results

Token ring occupancy vs throughput

Reconvergent path imbalance vs throughput
S
O
U
R
C
E

S
I
N
K

FUNCTION

Reconvergent path imbalance vs throughput
S
O
U
R
C
E

S
I
N
K

FUNCTION

Homework exercises, references

