
Dataflow asynchronous design
and pipeline performance

Benjamin Hill

benjamin.hill@intel.com

ASYNC Summer School 2022

mailto:benjamin.hill@intel.com

Legal Information

Intel does not control or audit third-party data. You should consult other sources to evaluate
accuracy.

Your costs and results may vary.

Results have been estimated or simulated

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others.

Asynchronous circuits

• At a behavioral level, only dipping down to explain motivation for
important concepts (we’ll get to lower-level details next week)

• Token = [DATA] + VALIDITY + FLOW CONTROL

• Processes communicate on Channels by exchanging Tokens

• Parallel (processes) is free; sequencing is engineered/expensive

Dataflow computation

• Structural, graphical way of describing computation

• Useful abstraction, intuitive way to convey design intent

• Not necessarily asynchronous, though some key advantages as a
natural mapping

Example: multiply-accumulate

Motivation: linear algebra core operation

y ← αx + y (SAXPY)

If you care about DSP, HPC, AI/deep
learning… this is a useful kernel to
implement

MULTIPLY

ADD
y0
(0)

α x

y

FUNCTION

Read values from all inputs, compute result and
send on output

Example functions: arithmetic, logic, decoding, etc.

In0

FUNCTION

Inn-1

Out

...

*[In0?arg0, In1?arg1, … , Inn-1?argn-1;
Out!func(arg0,arg1,…,argn-1)

]Also known as: OPERATOR

Multiplexer (MUX)

Select one input to send to output
based on control signal; ignore other input

Not to be confused with combinational MUX:
same basic behavior, but this is a dataflow operator

C0 1

MUX

In0 In1

Out

*[C?c;
[c=0 -> In0?x
[] c=1 -> In1?x
];
Out!x
]Also known as: controlled merge, conditional join

DEMUX

Steer input to one of two outputs,
based on value of control signal

Out0

DEMUX
0 1

In

Out1

C

*[In?x, C?c;
[c=0 -> Out0!x
[] c=1 -> Out1!x
]

]Also known as: SPLIT

COPY

Copy input token to multiple destinations

Often not drawn explicitly; all fan-out in
dataflow graph requires a COPY

In

COPY

Out0 Outn-1

...

In

Out0 Outn-1
...

*[In?x; Out0!x, …, Outn-1!x] Also known as: FORK, n-way link

BUFFER

Transmit token from input to output with storage
and handshaking flow control

Important for performance, but often not drawn
explicitly in static dataflow diagrams

In

Out

BUFFER

*[In?x; Out!x] Also known as: slack buffer, one-place FIFO, latch

Initial token buffer

Send one initial value token,
then behave as a normal buffer

value

In

Out

Out!value; *[In?x; Out!x] Also known as: INITIALIZER

SOURCE

Repeatedly send tokens with same constant value

Out

SOURCE
(value)

*[Out!value] Also known as: bit/token generator

SINK

Consume and discard input token

Not particularly useful by itself, but in
combination with other dataflow primitives

SINK

In

*[In?value] Also known as: (bit) bucket

Uncontrolled merge

Combine two input streams to one output

Depending on system design, selection is either:
• deterministic – only one input will be used at a time

• non-deterministic – requires arbitration to choose

In0 In1

Out

*[[#In0 -> In0?x
[] #In1 -> In1?x
];
Out!x

]Also known as: MIXER, JOIN

Dataflow building blocks

FUNCTION

SOURCE SINKBUFFER COPY

...

DEMUX MUX MERGE

Example: T-gate

In

Out

C

SINK

DEMUX
0 1

Transformation: “Multithreading”

Idea: replicate dataflow elements and
interleave data between them

Improves throughput at the cost of
area

Example: large arithmetic block where
it is difficult to add internal pipelining

Not just for compute, could also be
storage (e.g. tree FIFO)

Out

DUPLICATED
FUNCTION

DUPLICATED
FUNCTION

DEMUX
0 1

In C

0 1
MUX

BUFFER

Transformation: time sharing

Idea: share one expensive or unique
resource between multiple users

Improves area at the cost of
throughput

SHARED
FUNCTION

DEMUX
0 1

In0 C

0 1
MUX

In1

Out0 Out1

Building block: IF statement

Useful for high-level synthesis

Shown with FUNCTION blocks but
can also be other dataflow graphs
(e.g. nested IF statements)

Out

executed
if false

executed
if true

DEMUX
0 1

In condition

0 1
MUX

Building block: WHILE loop

Can also implement other loop
constructs with a similar pattern

loop body

DEMUX
0 1

In

0 1
MUX

Out

continue
loop?

0

Multiply-accumulate revisited

Motivation: linear algebra core operation

y ← αx + y (SAXPY)

Works well for one vector, but how about
the next? Want to reuse this MAC unit
without a full system reset

MULTIPLY

ADD
y0
(0)

α x

y

Multiply-accumulate revisited

One solution:

Add “clear” signal to reset the
accumulator, send along with
each new set of input data

MULTIPLY

ADD

y0
(0)

α x

y

SOURCE

(0)

SINK

D
E
M
U
X

0

1

0

1

M
U
X

clear

Pipeline performance

Defining asynchronous performance

Latency

Throughput

Average case performance

Computer architecture principle:
“Make the common case fast”

Works especially well in
asynchronous design, since
performance is only penalized when
a given unit is used

Example: divide in a processor ALU

Out

FAST
FUNCTION

SLOW
FUNCTION

In

Performance intuition
Whiteboard demonstration

SOURCE SINK

SOURCE SINK

F
U
N
C
T
I
O
N

SOURCE SINK

F
U
N
C
T
I
O
N

Simulation results

Token ring occupancy vs throughput

Reconvergent path imbalance vs throughput
S
O
U
R
C
E

S
I
N
K

FUNCTION

Reconvergent path imbalance vs throughput
S
O
U
R
C
E

S
I
N
K

FUNCTION

Homework exercises, references

