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Asynchronous circuits

• At a behavioral level, only dipping down to explain motivation for 
important concepts (we’ll get to lower-level details next week)

• Token = [DATA] + VALIDITY + FLOW CONTROL

• Processes communicate on Channels by exchanging Tokens

• Parallel (processes) is free; sequencing is engineered/expensive



Dataflow computation

• Structural, graphical way of describing computation

• Useful abstraction, intuitive way to convey design intent

• Not necessarily asynchronous, though some key advantages as a
natural mapping



Example: multiply-accumulate

Motivation: linear algebra core operation 

y ← αx + y (SAXPY)

If you care about DSP, HPC, AI/deep 
learning… this is a useful kernel to 
implement
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FUNCTION

Read values from all inputs, compute result and 
send on output

Example functions: arithmetic, logic, decoding, etc.

In0

FUNCTION

Inn-1

Out

...

*[ In0?arg0, In1?arg1, … , Inn-1?argn-1;
Out!func(arg0,arg1,…,argn-1)

]Also known as:  OPERATOR



Multiplexer (MUX)

Select one input to send to output
based on control signal; ignore other input

Not to be confused with combinational MUX:
same basic behavior, but this is a dataflow operator

C0      1

MUX

In0 In1

Out

*[C?c;
[  c=0 -> In0?x
[] c=1 -> In1?x
];
Out!x
]Also known as:  controlled merge, conditional join



DEMUX

Steer input to one of two outputs,
based on value of control signal

Out0

DEMUX
0      1

In

Out1

C

*[In?x, C?c;
[  c=0 -> Out0!x
[] c=1 -> Out1!x
]

]Also known as:  SPLIT



COPY

Copy input token to multiple destinations

Often not drawn explicitly; all fan-out in 
dataflow graph requires a COPY

In

COPY

Out0 Outn-1

...

In

Out0 Outn-1
...

*[In?x; Out0!x, …, Outn-1!x] Also known as:  FORK, n-way link



BUFFER

Transmit token from input to output with storage 
and handshaking flow control

Important for performance, but often not drawn
explicitly in static dataflow diagrams

In

Out

BUFFER

*[In?x; Out!x] Also known as:  slack buffer, one-place FIFO, latch



Initial token buffer

Send one initial value token, 
then behave as a normal buffer

value

In

Out

Out!value; *[In?x; Out!x] Also known as:  INITIALIZER



SOURCE

Repeatedly send tokens with same constant value

Out

SOURCE
(value)

*[Out!value] Also known as:  bit/token generator



SINK

Consume and discard input token

Not particularly useful by itself, but in 
combination with other dataflow primitives

SINK

In

*[In?value] Also known as:  (bit) bucket



Uncontrolled merge

Combine two input streams to one output

Depending on system design, selection is either:
• deterministic – only one input will be used at a time

• non-deterministic – requires arbitration to choose

In0 In1

Out

*[ [  #In0 -> In0?x
[] #In1 -> In1?x
];
Out!x

]Also known as:  MIXER, JOIN



Dataflow building blocks

FUNCTION

SOURCE SINKBUFFER COPY

...

DEMUX MUX MERGE



Example: T-gate
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Transformation: “Multithreading”

Idea: replicate dataflow elements and 
interleave data between them

Improves throughput at the cost of 
area

Example: large arithmetic block where 
it is difficult to add internal pipelining

Not just for compute, could also be 
storage (e.g. tree FIFO)
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Transformation: time sharing

Idea: share one expensive or unique 
resource between multiple users

Improves area at the cost of 
throughput

SHARED
FUNCTION

DEMUX
0            1
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Building block: IF statement

Useful for high-level synthesis

Shown with FUNCTION blocks but 
can also be other dataflow graphs 
(e.g. nested IF statements)

Out

executed
if false

executed
if true

DEMUX
0            1

In condition

0            1
MUX



Building block: WHILE loop

Can also implement other loop 
constructs with a similar pattern

loop body

DEMUX
0            1

In

0            1
MUX

Out

continue
loop?

0



Multiply-accumulate revisited

Motivation: linear algebra core operation 

y ← αx + y (SAXPY)

Works well for one vector, but how about 
the next? Want to reuse this MAC unit 
without a full system reset
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Multiply-accumulate revisited

One solution:

Add “clear” signal to reset the 
accumulator, send along with 
each new set of input data
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Pipeline performance



Defining asynchronous performance

Latency

Throughput



Average case performance

Computer architecture principle:
“Make the common case fast”

Works especially well in
asynchronous design, since
performance is only penalized when
a given unit is used

Example: divide in a processor ALU

Out

FAST
FUNCTION

SLOW
FUNCTION

In



Performance intuition
Whiteboard demonstration
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Simulation results



Token ring occupancy vs throughput



Reconvergent path imbalance vs throughput
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Homework exercises, references


