
Handout: Transistor Sizing

We will approximate the time taken to switch a digital signal by a simple first order RC delay,
where R is the resistance through which a capacitance C is switched. Consider driving the value
of a signal to ground using a single n-type transistor as shown below.

L2,W2

L1,W1 R

C

The resistance of a transistor depends on the width and length of the device:

R ∝ L1

W1

where L is the length of the transistor and W is the width of the transistor. The gate capacitance
of a transistor depends on the width and length of the device:

C ∝ L2 ×W2

which makes the RC delay for a transition on the wire:

RC ∝ L1L2

W2

W1

The capacitance of a transistor gate depends on the thickness of the gate oxide and its dielectric
constant, and therefore does not depend on the type of transistor. However, the resistance does
depend on the type of transistor due to the difference in electron/hole mobility. Therefore the
constant of proportionality for the RC delay depends on the type of drive transistor; this (for
us) translates to whether we are setting the signal to V dd or GND, since we will only use p-type
devices to set the output to V dd and n-type devices to set the output to GND. From the equation,
it is clear that increasing the length of either device only increases the signal delay and therefore
we should make L1 = L2 = Lmin, the minimum device length permissible by the technology.
Therefore, we can write the RC delay expression as

RC = τn
W2

W1

for an n-type drive transistor, where τn contains the constants of proportionality and the term
L2

min. Similarly, for a p-type transistor driving a load we can write

RC = τp
W2

W1

Since we are assuming minimum size devices, we will think of capacitances in units of transistor
widths, with the actual capacitance being obtained by multiplying the width by Lmin and the
capacitance of a gate of size 1λ× 1λ.

Notes c© 2002–2018 Rajit Manohar 1

Equal Transition Times. Given this simple model, we can determine how to size an inverter
so as to make the delays for a 0 → 1 and a 1 → 0 transition equal. Consider the inverter shown
below driving a load capacitance equal to W units of gate capacitance.

 Wp

Wn
W

The delay for the 0→ 1 transition and 1→ 0 transition is given by

d(0→ 1) = τp
W

Wp

d(1→ 0) = τn
W

Wn

Equalizing the delays, we obtain the ratio of p-type to n-type transistor widths rmax:

rmax =
Wp

Wn

=
τp
τn

Equalizing delays is equivalent to minimizing the maximum delay, under the constraint that (Wp +
Wn) is a constant.

Equal sum delay. For the next example, consider a transistor sizing problem where we have
an inverter driving a load as earlier. Instead of equalizing the delays on the 0 → 1 and 1 → 0
transitions, consider optimizing the sum of the two delays. This may be important because, for
instance, both delays appear as part of the timing budget for the cycle time of the system. The
delay expression of interest is given by

d = τn
W

Wn

+ τp
W

Wp

The constraint that we introduce is that the total input switching capacitance is fixed; in other
words, Wp +Wn = C for some constant C. The delay can be re-written as

d = τn

(
W

Wn

)
+ τp

(
W

C −Wn

)
Differentiating this with respect to Wn and minimizing this expression, we obtain that the optimal
ratio r+ = Wp/Wn that minimizes the sum of the two delays is given by:

r+ =

√
τp
τn

=
Wp

Wn

The delay of the up-going transition will be r+ times larger than the delay of the down-going
transition. Therefore, minimizing the sum of the delays does not equalize the delays for the 0→ 1
and 1→ 0 transition for the inverter.

Notes c© 2002–2018 Rajit Manohar 2

Three Inverters in Sequence. To begin tackling the problem of minimizing the delay through
a number of gates in sequence, consider the simpler problem of optimizing the delay for three
inverters in series. We assume that the first and third inverter have widths that are given, while
we are allowed to adjust the widths of the transistors in the middle inverter to optimize the delay.
We make the simplifying assumption that the ratio of p-type and n-type transistors is constrained
so as to equalize the 0→ 1 and 1→ 0 transitions or to equalize the sum of the delays, depending
on the circuit. We call the ratio selected r∗.

 r∗w

w W3W1

r∗W1 r∗W3

The delay as a function of the n-transistor width of the middle inverter is given by:

d(w) = τn(1 + r∗)w/W1 + τn(1 + r∗)W3/w

Note that while we have used 1→ 0 transitions for both the output of the first and second inverter,
choosing 0 → 1 transitions for either of them will not change the result of the optimization since
we have used the ratio r∗ to constrain the relative delay of the 0 → 1 and 1 → 0 transitions.
Minimizing this expression w.r.t. w, we obtain

d′(w) = τn(1 + r∗)/W1 − τn(1 + r∗)W3/w
2 = 0

w =
√
W1W3

Substituting this, we observe that the delay for the first transition is τn(1 + r∗)
√
W3/W1, which is

the same as the delay for the second transition! Also, we observe that we can write the widths as
follows:

w = W1 ×
√
W3/W1

W3 = w ×
√
W3/W1

In other words, the transistor widths are in a geometric series.

Chain of Inverters. Using the results we have just derived, we can determine the optimal sizes
for a chain of N inverters driving a load capacitance Cout, assuming that the first inverter in the
chain has an input capacitance Cin = (1 + r∗)W1.

 WN

r∗WN

Cout

Cin

W1

r∗W1

Since the optimal delay will occur when each transition has equal delay (see above), and this
happens when the inverter widths are in a geometric series, we know that:

WN = sN−1W1

Notes c© 2002–2018 Rajit Manohar 3

where s is the inverter width ratio. The delay for one transition is given by

d = τn(1 + r∗)W2/W1 = τn(1 + r∗)s

(Note: the inverter we choose to examine is not important, since all transitions will have equal
delay as we have shown in the previous example.) The delay of the output inverter is given by

dout = τn
Cout

WN

= τn
Cout

sN−1W1

At the delay optimal point, every transition has equal delay. Therefore, we know that d = dout,
and therefore:

τn(1 + r∗)s = τn
Cout

sN−1W1

which translates to:

sN =
Cout

(1 + r∗)W1

Since the input capacitance Cin = (1 + r∗)W1, we can rewrite this as:

sN =
Cout

Cin

s = N

√
Cout

Cin

Therefore, the total delay through the N inverter stages is given by

d(N) = Nτn(1 + r∗)s = Nτn(1 + r∗) N

√
Cout

Cin

To determine the optimal number of stages, we minimize this expression with respect to N . Note
that since τn(1 + r∗) is a constant, we can ignore this term for the minimization. Therefore, we
obtain

d′(N)/(τn(1 + r∗)) = N

√
Cout

Cin

+N N

√
Cout

Cin

ln (Cout/Cin) · −1

N 2
= 0

which simplifies to

N = ln (Cout/Cin)

giving a scale factor s of

s =

(
Cout

Cin

)1/ln(Cout/Cin)

= e

and a total delay of

dopt = Nτn(1 + r∗)s = eτn(1 + r∗) ln (Cout/Cin)

Notes c© 2002–2018 Rajit Manohar 4

Logical Effort

The results presented above assumed that the gates being sized were inverters. We made
the simplifying assumption that the ratio of p-type to n-type transistor widths was fixed, which
allowed us to reason about the size of a gate in terms of a single parameter. This approach can be
generalized to arbitrary gates; this generalized approach is called the method of logical effort.

Logical effort is a systematic way to size transistors in a circuit using the RC delay model.
The model can be derived by considering a single n-fet driving a capacitive load.

Cin = s · C

out

Cout + s · CpR/s

We assume that the transistor W/L ratio can be scaled by a factor s, which effectively increases the
gate capacitance of the transistor by a factor of s while reducing the “on-resistance” by a factor of
s at the same time. The transistor is driving a load capacitance Cout, and a parasitic contribution
from the source/drain capacitance of the transistor itself that is once again linear in the transistor
size. The values C, Cp, and R correspond to the input capacitance, parasitic capacitance, and on
resistance of a transistor of unit scale factor, i.e., where s = 1. The RC delay for out, denoted
dout, is given by

dout =
R

s
(Cout + s · Cp)

We can rewrite this as follows:

dout =
R

s
(Cout + s · Cp)

=
RCout

s
+RCp

To try and separate technology-dependent optimizations from technology-independent ones, we
normalize the delay by the term RinvCinv, where Rinv and Cinv are the R and C terms in the
equation for an inverter with scale factor set to one (the “unit” inverter). This gives us:

dout =
RCout

sRinvCinv

+
RCp

RinvCinv

=

(
RC

RinvCinv

)
·
(
Cout

Cin

)
+

RCp

RinvCinv

(We used the fact that s = Cin/C.) Finally, we need to decide what transistor W/L ratio corre-
sponds to a scale factor of one for every gate in our design. We pick the transistor width ratio that
equalizes the drive strength of the gate to the unit inverter. (Note that this choice is arbitrary.)
This means that the on resistance of a unit gate will match the on resistance of the unit inverter,
since that is what limits the current drive. Therefore, R = Rinv, and we get:

dout =

(
RC

RinvCinv

)
·
(
Cout

Cin

)
+

RCp

RinvCinv

=

(
C

Cinv

)
·
(
Cout

Cin

)
+

Cp

Cinv

= g · h+ p

where g = C/Cinv is called the logical effort of the gate, h = Cout/Cin is called the electrical effort
of the gate, and p = Cp/Cinv is the parasitic delay. The product gh is called the effort. g is the

Notes c© 2002–2018 Rajit Manohar 5

ratio of the input capacitance of the unit gate to the input capacitance of the unit inverter, h is
the ratio of the output to input capacitance of the gate, and p is normalized parasitic capacitance
of the gate.

The dynamic energy E can be measured in units of Cinv.

Eout =
Cout + s · Cp

Cinv

This can be re-written

Eout =
Cout

Cin

· sC
Cinv

+ sp

= s(gh+ p)

= sdout

Delay Optimization: Three Gates. To optimize a chain of gates, we can write that the total
delay is the sum of the delays of the gates along the path. In other words, we have

d =
∑
i

gihi + pi

Consider three gates in series, where we are given the sizes of the first and third gates but are free
to pick the scale factor that minimizes the total delay.

Since adjusting the scale factor for gate two affects both the output capacitance of gate one and
the drive strength of gate two, we need to take both of these into account for delay minimization.
Since parasitic terms do not contribute to the minimization problem, we can simply optimize the
delay by examining:

D = g1h1 + g2h2

The logical efforts g1 and g2 are pure functions of the gate topology. The electrical efforts depend
on the scale factor s, since h1 is the ratio of the output capacitance of gate one (which is the
input capacitance of gate two) to the input capacitance of gate one (fixed in this problem, denoted
by Cin), and h2 is the ratio of the output capacitance of gate two (fixed at Cout) to the input
capacitance of gate two. Therefore, we obtain:

D = g1(sC2/Cin) + g2(Cout/(sC2))

where C2 is the input capacitance of gate two with unit scale factor. Minimizing d, we get:

dD

ds
= g1C2/Cin − g2Cout/C2

1

s2
= 0

which gives us sC2 =
√
CinCoutg2/g1 as the input capacitance of gate two. Substituting this into

the delay equation, we observe that

D = g1

√
CinCoutg2/g1

Cin

+ g2
Cout√

CinCoutg2/g1

=
√
g1g2Cout/Cin +

√
g1g2Cout/Cin

That is, the optimal scale factor equalizes the effort per stage, i.e., g1h1 = g2h2.

Notes c© 2002–2018 Rajit Manohar 6

Path Delay Optimization. In a delay optimization problem with N stages, we conclude that
the effort per stage must be equal. Therefore, when we optimize a path, we can write

d =
N∑
i=1

gihi + pi

= Nf + P

where f = gihi for any choice of i = 1, 2, . . . , N is the effort per stage, and P =
∑N

i=1 pi is the total
parasitic delay along the path. The only constraint we have is that the input capacitance for gate
one is fixed at Cin, and the final output capacitance for gate N is fixed and is given by Cout.

If the gates are in a linear chain, then the output capacitance of a gate is the input capacitance
of the next gate, and we use Ci to denote the input capacitance of the ith gate (In terms of the
scale factor for gate i, Ci = sigiCinv). Therefore, hi = Ci+1/Ci. Since f = gihi = giCi+1/Ci, we
conclude that Ci = (fCi+1/gi). Therefore,

Ci =
f

gi
Ci+1

=

(
f

gi

)(
f

gi+1

)
Ci+2

=
fN+1−i∏N

k=i gk
· Cout

Using the fact that C1 = Cin, we obtain:

Cin =
fN∏N

k=1 gk
Cout

that gives us:

fN =

(
N∏

k=1

gk

)(
Cout

Cin

)
The quantity

∏N

k=1 gk, denoted G, is called the path logical effort, and the quantity Cout/Cin,
denoted H, the path electrical effort. The product GH = F is called the path effort. The total
delay along the path is given by Nf + P = NF 1/N + P .

Branching Paths. If the path is not linear, then the output capacitance of the ith gate is not the
input capacitance of the (i+ 1)th gate, but instead is multiplied by some factor that is called the
branching effort, bi. (Note that this assumes that all branches are evenly scaled for the value bi to
be constant.) The term bi corresponds to the ratio of capacitance that switches to the capacitance
along the path being optimized. Denoting B =

∏
i bi, the total effort F is given by GHB.

Notes c© 2002–2018 Rajit Manohar 7

