The Design of an Asynchronous
MIPS R3000 Microprocessor

Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystrom
Paul Penzes, Robert Southworth, Uri Cummings, Tak Kwan Lee
Department of Computer Science

California Institute of Technology
Pasadena CA 91125, USA

Abstract

The design of an asynchronous clone of a MIPS R3000 microprocessor is presented.
In 0.6um CMOS, we expect performance close to 280 MIPS, for a power consumption of
7 W. The paper describes the structure of a high-performance asynchronous pipeline, in
particular precise exceptions, pipelined caches, arithmetic, and registers, and the circuit
techniques developed to achieve high throughput.

1 Introduction

This paper describes the architectural algorithms and circuit techniques used in the de-
sign of an asynchronous MIPS R3000 microprocessor. The project has two main goals.
First, we are investigating issues in asynchronous processor architecture that we have not
tackled in the Caltech Asynchronous Microprocessor [6]: caches, precise exceptions, regis-
ter bypassing, branch-delay slot and branch prediction. Secondly, we are developing new
techniques for asynchronous digital VLSI—based on very fine pipelining—that can meet
high throughput requirements without sacrificing the low-power advantage of asynchronous
circuits.

At the moment of writing, HSPICE simulations indicate that we can achieve these goals:
In 0.6pm MOSIS SCMOS, the instruction execution frequency is expected to be approxi-
mately 280 MIPS for a power consumption of 7 W at 75°C. (This first prototype is “single-
scalar;” it fetches one instruction at a time.)

We want to optimize the average instruction execution time, also called “cycle time”,
7, and the average energy per instruction, E. Since these two parameters can be traded
against each other through voltage adjustments, we combine them into one figure of merit,
the product E72, which is independent of the voltage in first approximation. Minimizing
this measure is the theoretical goal of our architectural and circuit decisions, and it is
through this measure that we compare our designs against others. In particular, it makes it
possible to compare designs at opposite ends of the performance curve. Furthermore, once
we have obtained a good E72, we can exploit the robustness of asynchronous designs to
voltage variations to achieve both high speed at high voltage and low power at low voltage.
For instance, we expect the asynchronous MIPS to deliver 100 MIPS for less than 0.5 W
of power at 1.5 V, which is a better performance than that of low-power designs like the
StrongARM in equivalent technologies. (See the section on performance comparisons.)

At the architectural level, we start with a clean slate. We want to implement the MIPS
R3000 instruction set, as defined in [3], including the precise exception mechanism, and the

branch delay slot. But we don’t require any similarity whatsoever with the architecture of
existing MIPS microprocessors. We could have replicated exactly some standard architec-
ture by implementing each pipeline stage asynchronously. But such a solution would grossly
underutilize the possibilities of an asynchronous architecture. Instead, a significant part of
this project’s research has been to invent new asynchronous solutions for issues associated
with pipelined microprocessors.

The asynchronous circuits we use are called quasi delay-insensitive or QDI. A QDI circuit
does not use any assumption on, or knowledge of, delays in operators and wires, with the
exception of some forks, called isochronic forks, in which the delays on the different branches
of the fork are assumed to be similar. (See [8] for a more precise definition.) QDI circuits
are the most conservative asynchronous circuits in terms of the use of delays. But they
are also the most robust to physical parameters variations because the circuit’s dependence
on delays is minimal. It is this robustness that makes it possible to exchange energy and
throughput against each other through voltage adjustments. Another goal of this project
was to show that delay assumptions are not necessary to achieve high performance in
asynchronous circuits.

The paper is organized in two parts. Part 1 deals with architectural issues. We briefly
introduce the MIPS instruction set. We describe the general structure of the asynchronous
pipeline, and we present in more detail the solutions introduced for the main architectural
issues. Part 2 deals with new asynchronous circuit techniques introduced to improve both
the throughput and the latency of the pipeline. Finally, we discuss the expected perfor-
mance of the first prototype. We compare the performance, in terms of both speed and
power, to other processor architectures and draw some conclusions.

2 Part 1: Architecture

2.1 Specification of the MIPS R3000

We chose the MIPS R3000 as target for our project because it is the archetype of a
commercial RISC microprocessor, without being overly complicated. The R3000 consists
of two tightly-coupled processors, usually implemented on a single chip: a full 32-bit RISC
CPU, and a memory-management unit, called CP0. The processor can be extended with
three off-chip coprocessors. Coprocessor 1 (CP1) is specified by the instruction set to be
the floating-point unit. The other two are unspecified.

The CPU has 32 32-bit general-purpose registers, a program counter, and two special-
purpose registers for multiplication and division. It has two operating modes—user and
kernel—providing different levels of hardware protection. Branches have a single delay-slot.
Although the MIPS ISA allows both little-endian and big-endian modes to be selected on
reset, we have chosen to implement little-endian mode only.

There are three types of instructions: Immediate, jump, or register, with the following
structures.

e immediate: (op,rs,rt,immediate)
e jump: (op,target)
e register: (op,rs,rt,rd, sa, func)
The field op is the opcode;the fields rs, ri, and rd are register indices, immediate is an

immediate offset, and target is an offset used in jump target calculation: sa is a shift
amount, and func is a function-field supplementing the opcode, when necessary.

The memory management system provides hardware for address translation in the form
of an on-chip 64-entry Translation Lookaside Buffer. The R3000 has write-through direct-
mapped caches with one-word cache lines and 4-word blocks for refill on a cache miss.

The chip we are sending now for fabrication is not the complete MIPS but a somewhat
reduced “MiniMIPS.” We have left out the TLB implementation (we have implemented the
TLB down to the gates but we don’t have layout yet), the partial-word memory operations,
and the external interrupt mechanism. We are implementing the internal precise exceptions
and the on-chip caches.

2.2 General Pipeline Structure

Let us first clarify one possible source of confusion. The final design is very finely
pipelined, in order to achieve high throughput. So, what we are describing now as a pipeline
stage is later on refined as a large number of small pipeline stages. For the moment, we
describe the pipeline at a macroscopic level: a stage is meant to be one of the main units
of the architecture.

The simplest structure for the MIPS consists of three sequential steps: compute the next
program counter, fetch the instruction, execute the instruction.

The first step in pipelining this program consists in decomposing it into a 3-stage pipeline
consisting of a PC unit that computes the next pc, a FETCH unit fetching the instructions,
and an EXEC unit executing the instruction. Since the MIPS has a one-delay slot, this
pipeline can allow the execution of an instruction to overlap with the program counter
calculation and the fetching of the next instruction: we have two instructions in different
stages of processing in this loop.

Next, we decompose the EXEC unit to allow concurrent and out-of-order execution
of instructions. The general pipeline structure is shown in Figure 1. A DECODE unit
decodes the instruction to be executed, a number of execution units (EUs) execute the
decoded instructions, a register unit (REG) controls the general-purpose registers (GPR):
the unit sends the values of registers to the execution units via the two operand buses X
and Y, and receives the result of an instruction execution from the execution units via
one of the two result buses Z0 or Z1. The register unit also decides when to do register
bypassing.

A write-back unit, WB, decides whether the result from an execution unit should be
written into the registers (GPR, Hi/Lo in the multiplier/divider unit, or CP0 registers)
depending on whether an exception has occurred in a previously executed valid instruction.
The execution units are:

e an adder/subtracter/comparator

e a functional unit for logical operation

e a memory unit for load/stores and manipulation of CP0 registers
a shifter

a multiplier /divider

There are two distinct parts in the pipeline: the “fetch-loop” consisting of the PC' unit,
the FETCH, and the DECODE, and the “execution pipeline” consisting of the execution
units, the register unit, and the write-back.

A token is a piece of data in transfer in the pipeline: pc, instruction, opcode, operands,
etc. At any moment, there are exactly two tokens in the fetch-loop. But there is a variable
number of tokens in the execution pipeline.

epc queue

AL pcunit

'

exception

branch

information

icache - fetch

— adder
~——
-~ shifter \
unit | writeback

decode

)

—— fblock

ibus

rs,rt,rd

kill

L mult/div

—

X Y Z0 Z1

)

—— 1 bypass |[e——
register

-
file

Figure 1. The MiniMIPS pipeline

The execution pipeline of the MiniMIPS is very different from a synchronous one. In a
synchronous pipeline, the EU’s and the WB are aligned in some specific sequence, and all
the tokens go through all the units of the sequence in order. In the MiniMIPS, all EU’s
are in parallel in the pipeline, and can execute concurrently. For example, a result coming
out of the adder will not go through any other EU or the WB, but directly to the register
unit.

Although all the stages of the execution pipeline are finely pipelined and can contain a
large number of tokens—as we will explain, the maximal number of tokens that a pipeline
can contain is called the slack of the pipeline—the actual number of tokens is limited
to achieve the maximum throughput. For the pipeline to process the tokens at optimal
throughput, the tokens have to be spaced through the pipeline. The optimal number of
stages per token for maximum throughput is determined by the ratio of the cycle period
over the forward latency of a pipeline stage. As we will see, the circuit characteristics of the
pipeline stages we have chosen for the MiniMIPS are such that the optimal throughput is
achieved for 8 stages per token. As a consequence, the execution pipeline contains 3 tokens
on average.

2.3 An Instruction Execution

As an illustration of the pipeline, let us follow the execution of a typical instruction, for
example an addition: ADD rd, rs, rt. The net effect is defined as: “if GPR[rs|+GPR]|rt] <
232 then GPR|[rd| := GPR[rs| + GPR|[rt] else overflow exception.”

The pc of the instruction is calculated by the PC unit and sent to the FETCH , together
with a “valid again” boolean label used in the exception handling phase of the pipeline.
The FETCH unit fetches the instruction from the instruction cache and sends it to the
predecode part of the DECODE while the tags in the instruction cache are compared for
hit or miss. If it is a hit, the decoding of the instruction is pursued normally. If it is a miss,
the partially decoded instruction is killed, and the FETCH fetches the instruction from
memory. (In the complete MIPS, address translation may cause an exception, but not in
the MiniMIPS.)

The DECODE finishes the decoding of the instruction: the opcode is passed to the ADD
execution unit, and the rs, rt, rd fields are passed to the REG unit to select and reserve
the operand registers rs, ri, and the result register rd. The DECODE also adds to the
“unit-number” queue the entry that an add instruction has been dispatched.

From now on, the execution of the instruction involves several units operating concur-
rently: The adder decodes the opcode. The REG unit sends the operandss over the operand
buses either from the registers GPR[rs| and GPR|[rt] or from the bypass if it happens that
the previous instruction has produced a result to be written in GPR][rs] or GPR]rt]. Once
the adder has received the operands from the X and Y buses, it performs the addition,
which may either lead to an overflow exception or produce a valid result.

In both cases, the adder communicates with the write-back (WB) unit which polls each
EU in order of program execution. The program order is provided by the unit-number
queue. If the addition terminated normally, and if the addition is not part of a sequence of
instructions that have to be canceled after an exception occurred, the WB allows the result
of the addition to be written back in the registers, through one of the two result buses.
(The decode decides which result bus is used, and this information is passed to the result
bus interface of the adder.)

The writing of the result in a register is delayed. The result is kept in the bypass unit
until the next cycle. If the addition has to be canceled either because it caused an overflow

exception, or because it is in the sequence of “canceled instructions” following an exception,
then the WB sends a cancel command to the register unit.

On exception, the WB sends an exception message to the PC unit and gathers the
necessary information about the exception. The P(C unit probes the exception channel
once per iteration. If there is a pending exception message from the WB, it updates the
pc accordingly. Observe that probing the exception channel when there is no exception is
practically free since it does not involve any synchronization of the writeback with the PC
unit.

This completes the brief description of a typical instruction. Branch/jump instructions
are different since they do not go to an execution unit but directly from the DECODE to
the PC unit.

2.4 Precise Exceptions

The handling of precise exceptions is one of the main innovations of this project. Since an
asynchronous pipeline is a totally distributed system, reconstructing the precise global state
of the computation at which an exception occurs is different from, and more complicated
than, a synchronous pipeline. On the other hand, the overhead of checking for precise
exceptions is almost negligible in an asynchronous system when no exception occurs.

An exception occurs either during the execution of an instruction in an execution unit,
during the fetching of the instruction from memory, or because of an external interrupt.
In the complete MIPS, when a memory exception is detected during the fetching of the
instruction, the decoder passes the instruction to the memory/CP0 unit. (Such an exception
does not occur in the MiniMIPS.) The unit recognizes it as a memory-exception instruction,
and deals with it as if it were a normal EU exception.

Consider an exception detected in an execution unit. First, by definition of precise
exceptions, the exception mechanism has to guarantee that the instruction that caused the
exception, and all instructions following it in the pipeline before the first instruction of
the exception handler, do not change the global state of the computation. We will refer to
these instructions as the canceled instructions. Canceling instructions amounts to canceling
the “write-back” of the results of these instructions’ executions to the permanent registers
(GPR, Hi/Lo, and CPO0 registers) and to memory.

Second, the command to interrupt the normal pc update has to be sent to the PC unit.

Third, the information about the exception (the cause of the exception, the pc of the
exception instruction, whether the exception occured in a branch-delay slot) has to be
stored in the proper CP0 registers.

In order to determine the sequence of canceled instructions, the program order of in-
struction execution must be recorded before the DECODER dispatches the instructions to
the different execution units. To that effect, the decoder maintains a queue of unit numbers
(the unit-number queue) that represents the order in which the DECODER dispatches the
instructions to the EU’s.

The central mechanism for exception handling is the write-back unit. Each execution
unit that can cause an exception communicates to the WB whether the instruction just
executed resulted in an exception. The WB cancels the writing of the instruction result
into the registers if that instruction or a preceding instruction caused an exception. The
WB reconstructs the program order by polling the execution units in the order of the unit
numbers in the queue.

The interaction between the EU’s and the WB is very different from what usually takes
place in a synchronous pipeline. Because the EU’s are not aligned in any order in the
pipeline, the WB is not placed “at the end of the pipeline,” but rather “on the side.” Each

EU concurrently sends its result to the bypass and communicates with the WB. If the
result has to be canceled because the instruction is one of the canceled instructions, the
WB sends a “kill” message to the register unit, and the result is canceled in the register
unit. This solution is obviously more efficient than the synchronous one.

The WB needs one additional bit of information in order to stop canceling instructions.
We introduce a “valid-again” bit generated by the PC unit. When a pc is sent by the
PC unit to the FETCH, a valid-again bit is attached to it. This valid-again bit is then
attached to the fetched instruction sent to the DECODE, and in turn to the unit-number
queue. When the WB reads a unit number with the valid-again bit set, it stops discarding
instruction write-backs. The first pc tagged with the valid-again bit set is not the pc of
first instruction of the exception handler but that of a pseudo-instruction preceding it. This
pseudo-instruction is decoded as a CP0 instruction and is executed by the CP0 unit. The
purpose of this pseudo-instruction is to store the information about the exception in the
proper CPO0 registers, before the exception handler instructions can use these CP0 registers.

2.5 Register Unit

The register unit consists of the register file, the register lock, the execution buses, and
the register bypass. (See Figure 2.) The register file has two read ports and two write
ports. The register bypass connects the register file’s ports to the X and Y operand buses,
and the Z0 and Z1 result buses. The X and Y buses are 1-to-6: they are used to send
an operand from the X or the Y bypass to 1 of 6 units. The Z0 and Z1 buses are 6-to-1:
they are used to send the results from the units to the Z0 or Z1 bypass. The data on a
result bypass may be written back into a register, or both written back into a register and
sent to an operand bus in the case of a bypass. A bypass takes place when the operand
of an instruction is the result of the previous instruction. Again because the EU’s are not
aligned in any particular order in the pipeline, each unit communicates directly with the
bypass unit, and therefore bypassing can take place between any two FU’s.

Operand X Bus X X Bypass RO
[T T T
Operand Y Bus Y Y Bypass RL
I > Register File
20 Z0 Bypass wo
Result Z Busses
Z1 71 Bypass w1

T

Figure 2. Register File and Execution Buses

The ports of the register file are also buses: The R0 and R1 ports are 32-to-1 buses,
and the W0 and W1 ports are 1-to-32 buses. Each unit is connected to a bus through a
bus-interface process. An additional asynchronous channel delivers the selection control to
these processes in the form of a 1-of-N code.

We use the two result buses in a strictly interleaved scheme in order to reduce pipeline
stalls caused by discrepancies between execution unit latencies. For instance, if an instruc-

tion is assigned to write back to result bus Z0, but has a large latency (like a cache miss),
the next instruction can still write back on result bus Z1 in parallel if there is no data de-
pendency. Interleaving the result buses permits a latency mismatch of the execution units
equal to the processor’s cycle-time without reducing the processor’s throughput.

2.6 Low-latency Addition

Apart from the shifting and logical operations, there are two types of arithmetic oper-
ations in the MiniMIPS: addition and comparison. There are four types of addition and
comparison instructions, depending on whether the instruction uses the immediate field or
a register as one operand, and whether the operation is signed or unsigned. Subtraction is
either signed or unsigned, and cannot use immediates.

All the addition/subtraction and comparison instructions are executed in a single four-
stage pipelined execution unit which we will refer to as the “adder.” The adder can generate
an overflow exception on addition and subtraction instructions. When an instruction for
this unit is received by the decode, the unit receives operands from the X and Y buses
and possibly the immediate buses and additional control information from the decode. The
adder produces its output on one of the two Z buses as well as a bit indicating whether the
instruction raised an exception.

The standard techniques for binary addition include using a carry-lookahead adder (a
kill-propagate-generate adder), a carry-select adder, or a conditional-sum adder. In an
asynchronous system, we have the option of using a simple ripple-carry binary adder, since
the average-case latency (assuming the inputs are bitwise independent) for binary addition
is O(log N), where N is the number of bits in the input. Since the adder is used in latency-
critical parts of the processor such as address calculation in the memory unit, we decided
to use an adder with a worst-case latency of O(log N) instead of O(N).

Most fast binary adders are based on the kill-propagate-generate (kpg) technique. As-
suming that we do not use a large number of n-type transistors in series (not more than six
for the process we are using), a pipelined full-throughput kpg adder would take seven stages
of logic, including the part of the adder that conditionally reads from different buses and
conditionally inverts the input for subtraction. Carry-select and conditional-sum adders
speculatively compute results based on the different inputs and therefore waste energy. We
would like to keep the speculation used in the adder to a minimum.

The adder we use is a hybrid between a kpg adder and carry-select adder. The first
stage of the adder computes the kpg code for each input bit. Next, a kpg tree adder is used
to compute the two possible sums for each 8-bit block. We compute the carry-in for each
8-bit block in parallel with the block addition. These two operations constitute the next
two stages of the adder. The final stage of the adder selects the appropriate sum for each
8-bit block and produces the output.

HSPICE measurements indicate that this execution unit can execute the required arith-
metic instructions at a throughput of 280 MHz at 75°C, with a worst-case input to output
latency of 1.6ns. The current architecture will scale to a 64-bit adder without significant
latency or throughput penalty.

The adder used to add immediates to a register value for address calculation in the mem-
ory unit has been optimized to take advantage of the fact that the immediate operands are
usually small, and that the immediate field is known early since it is part of the instruc-
tion. The adder is optimized to produce the bottom 12 bits of the output in 0.5ns for small
immediates. These bits are needed early because they are used to access the data cache.

2.7 Pipelined Caches

The MiniMIPS cache system consists of two four-kilobyte (1 page) caches: an instruction
cache (I-cache) and a direct-mapped data cache (D-cache). The caches are identical except
that the D-cache has provisions for writing (using a write-through mechanism with a write
buffer) and the I-cache has provisions for branch prediction and predecode. Cache refills
are carried out with a 128-bit (4 line) refill block.

Some functions that are part of the MIPS cache specification have been omitted for the
sake of simplicity: the isolate-cache and swap-cache mechanisms, the explicit invalidation
mechanism, and the ability to change the size of the refill block. The MiniMIPS instruction
set also omits partial-word operations. The cache architecture has been designed so as
to make it easy to add partial-word operations while maintaining low latency and high
throughput on the more common word loads and stores.

2.7.1 Cache Lines, Segments, and Invalidation

The MiniMIPS caches use 48-bit cache lines: 32 bits of data and 16 bits of tags. The tags
are generated from bits 12 through 27 of the address. Address bit 31 is hard-wired to zero
in the cache; this technique is used to implement an “uncacheable” two gigabyte segment
since tags with address bit 31 equal to one always miss. Furthermore, this allows flushing
the caches by reserving a four-kilobyte block of zeros in the uncacheable segment. Reading
this block as data or executing it (for the I-cache) will flush the caches.

2.7.2 Cache Pipelining

In order to achieve high density, the static RAM of the cache core was designed with an
average access time of 3 ns, almost an entire instruction fetch cycle. Allowing an additional
1.5 ns for tags comparison and the subsequent decision to accept or discard the value
read from the cache core puts the latency through the entire cache system at 4.5 ns for a
cache hit. The maximum cache performance required is obtained with one cache operation
per instruction per cache—one instruction fetch from the I-cache and one load from the D-
cache. Given the average latency of the cache cores, this performance could not be achieved
without pipelining the caches.

An unpipelined cache would look up the contents of a cache line, compare the tags, and
then decide whether to output the data as its result and go ahead with the next operation or
to read the data from memory, refill the cache core, and continue. The design is pipelined
so that the cache control issues a lookup to the cache core before deciding whether the
previous lookup was a hit or a miss. The cache core is pipelined internally, allowing the
two lookups to proceed independently and concurrently unless they refer to the same block
in which case they are strictly sequentialized. The cache array is implemented as a pipelined
tree fanning out to 4 leaf-cells.

This pipelined cache implementation introduces problems analogous to “structural haz-
ards.” Assume that a load word at an address is immediately followed by a store to that
address. The store instruction updates the value in the cache and in the main memory. If
the load hits in the cache, the update in the cache will take place after the load and the
execution is correct. If, however, the load misses, the store will already have been issued
to the cache core (since the cache is pipelined), and will update the cache line immediately
without checking any further conditions. Meanwhile, the refill of the line has begun, and
the final state will be that the value that was written to the cache core will be overwritten
by the old value from main memory!

Another, less serious, problem with the pipelined cache implementation concerns multiple
consecutive loads in the same refill block—something likely to happen in programs with
locality of data reference. If the first load misses, the second is highly likely to miss as well,
needlessly causing two cache refill operations of the same block.

We use the same solution for the write-after-write hazard and the double refill prob-
lem. The cache is given the ability to repeat certain operations that are affected by the
dependencies between successive cache lookups. A cache store is repeated when it follows
another load miss to the same line, since the load following the store may have overwritten
the stored data by a refill. A load is repeated when it is a miss, and it follows another load
miss to the same line.

The implementation uses an additional eight-bit comparator to check whether a read
miss or write occurring after a read miss is to the same block. If the operations refer to the
same block, the operation following the miss is repeated (repeated writes are not repeated
to main memory but only to the cache core); if not, they are allowed to proceed. The logic
to detect these cases is added to the R process. Interestingly, it would be possible to repeat
more operations, e.g., by omitting the comparator and always repeating the instruction
after a load miss; this would lead to a simpler but slightly less efficient solution.

The MiniMIPS cache system has a variable latency. When a cache miss occurs, the
effect on latency is hidden from the rest of the system simply by allowing the handshakes
between the cache and the main CPU pipeline to stretch. Internally, the cache array has
also a variable latency—the throughput of a leaf of the tree of cache cells is only one half
that of the CPU as a whole. But, by interleaving the accesses to different leaves, the total
throughput of the cache array is brought up to match that of the main CPU pipeline. This
means, on the other hand, that the access time through the cache depends on the address
of the data. If two reads are dispatched that refer to data in the same leaf, the latency
of the second read will be greater than if they had referred to separate blocks. Again, the
delay-insensitivity of the pipeline makes these latency variations transparent to the rest of
the system.

3 Part 2: Microarchitecture and Circuit Techniques

In this part, we describe the novel asynchronous pipeline implementation and the related
circuit techniques that we have introduced in order to achieve high performance.

All circuits were designed using the synthesis method described in [7]. This method
leaves the designer great freedom in choosing between speed, size, or power, as long as
the circuit is quasi delay-insensitive. However, to minimize E72, we found that the best
results are obtained for very fine pipelines. In order to achieve the high-throughput and
low latency we are aiming at, we had to improve our design techniques significantly, by
introducing several innovations compared to previous asynchronous designs: low forward-
latency pipeline stage, slack matching, and pipelined completion. We pipeline all of our
lowest level processes; all cells combine computation and buffering (latching) of the data.
This approach to asynchronous pipeline design was first proposed in [4] and used in the
design of a digital filter[2].

3.1 Handshaking Protocols

Processes communicate through channels implemented with a four-phase handshake pro-
tocol. The data is encoded using two types of DI codes: 1-0f-N code or dual-rail code. (In

10

a 1-of-N code, one rail is raised for each value of the data. In a dual-rail code, two rails are
used to encode each bit of the binary representation of the value.)

A DI code is characterized by the fact that the data rails alternate between a neutral state
that doesn’t represent a valid encoding of a data value, and valid state that represents a
valid encoding of a data value. See [9]. A channel communication goes through four phases.
The sending process waits for an “enable” from the receiving process to be true, then it
sets the data rails to a valid value. The receiving process lowers the “enable” after it has
latched the data. The sender waits for the “enable” to be false, then sets the data rails to
the neutral value. Finally, the receiver raises the “enable” to allow the next communication
to start. In HSE notation, sending the value of a one bit variable z over channel C' and
receiving it in variable y looks like:

Sender = [C°1; [2° — CO1z' — €115 [2C°1; C°L, C1;
Receiver = [C° — y°10C" — y'11; C°l; [-C°A=C'1; C°F

In brief, *[S] repeats statement S infinitely, the [B] waits for a boolean expression
to be true, and the [By — SollB1 — S1] waits for one of the boolean expression Bj or
B1 to become true, then executes the corresponding statement Sy or S;. The semicolon
sequences two statements, and the comma lets two statements execute in parallel. The v T
and v] set a boolean variable v to true and false respectively. The superscripts are used to
indicate the data rails and enable of a channel.

3.2 Handshaking Reshuffling

Consider a simple buffer stage that receives one bit of data z on channel L, and sends it
(without computation) on channel R:

*[L?z; Rlz]

Using the send and receive hanshakes, we implement the buffer stage as:
*[[L° — 2970 — 2'11; L¢|; [-I° A-L'1; L°7;
[2° — R%10z' — R'11; [-R°]; R°[,R'|; [R°]]

For the MIPS, we used only three different types of HSE reshufflings that are all directly
derived from three reshufflings of the above HSE for the buffer. A reshuffling of a HSE
rearranges the non data-dependent portions of the four-phase communication to improve
speed and size. The three reshufflings are called HB (half-buffer), PCHB (precharge-logic
half-buffer), and PCFB (precharge-logic full-buffer). All three reshuffling eliminate the
explicit variable z by computing the output data directly from the input data.

For a half-buffer, the communication phases of the inputs alternate with the phases of
the outputs.

HB = *[[R°]; [L° — ROTDL' — RY1; L°|;
[-R°1; [-L°A=L'1; R°|,R'|; L°1]

This circuit is well-known, and is widely used as an asynchronous QDI buffer. By adding
more inputs and more outputs, and by including more complex logic in the selection state-
ments, this type of cell may also do computation as well as buffering.

For large numbers of inputs, the half-buffer is inefficient as the wait for the neutrality
of the inputs ([-L° A ~L']) grows unmanageably large, and must be done before the
outputs are reset (R, R |). For most cells with computation, we use the second reshuffling
(precharged half-buffer). This reshuffling postpones the wait for the input neutrality. Since

11

51%o<]i \(Al Al\// %w o1

oo

AO0— Av ABCv]

Cc C en
AL—)]
Bo— BV S Sl

— DO Dv

Figure 3. PCHB Fulladder

there is no data transmitted on the second half of the handshake protocol, this is allowed.
The PCHB reshuffling for a buffer is:

PCHB = *[[E°]; [L° — R°TIL' — R'11; L7y
[_‘Re]; Rol, Rll, [—|L0 A —|L1]; LeT]

Adding more input and output channels simply enlarges the expressions that L°T and
Lf| must wait for. These expressions can be broken down into completion trees of OR
gates followed by C-elements to check the validity and neutrality of the input and output
channels. In the circuit implementation, the main block of computation looks like precharge
dual-rail domino-logic (hence the name). We usually do the logic computation in a network
of n-transistors, precharged by one or two p-gates in series. These inverted rails are sent
through inverters to produce the output, so that these cells can be easily composed. A
PCHB implementation of a one-bit full adder is shown in Figure 3.

In several circumstances requiring higher speed (mainly the buses, register bypass, and
register file), the PCFB reshuffling is used. This reshuffling allows the reset phases of the
input and output communications to execute in parallel. An internal state variable en is
added so that the PRS can be compiled. The HSE for a one bit buffer is:

12

PCFB = *[[R°]l; [L° — RY10L* — R11; L&|; enl;
([=R°1; R°|,R'|), ([-L° A=L'1; L°1); entl

Although this reshuffling requires a state variable, it leads to a very efficient CMOS
implementation. Essentially both the output data and the input enables are produced by
precharge logic blocks as soon as possible. The en must check that the output data has
actually become neutral, but the input enables don’t have to. This allows the neutrality
test of the output data to overlap with raising the left enables, thus saving a few transitions
on the handshake cycle, and reducing the load on the circuits for the input enables.

These types of processes produce a deep pipeline when composed, but each process
has the forward latency of only a N-logic pulldown followed by an inverter. Since no
extra latches are required, these processes are energy and area efficient, compared to non-
pipelined QDI alternatives. In forward latency, these cells are superior to synchronous
dual rail domino logic, since there are no latches at the end of a block of logic, and no
extra timing margin is necessary. The intrinsic pipelining also yields a very competitive
throughput. Although restricted, this design style has produced high performance circuits
for caches, buses, registers, control, and arithmetic.

3.3 Slack Matching

The slack of a communication channel in an asynchronous system refers to the amount of
buffering present in the channel. The slack of a channel indicates the maximum difference
possible between the number of messages sent and received on the channel. This slack is
implemented with buffers that are pipeline stages.

Given a linear array of pipeline stages, the steady-state cycle time and latency through
the pipeline stages are governed by the cycle time of individual stages and constraints
introduced due to interactions between neighboring stages [1]. The pipeline stages described
above introduce constraints on the cycle time 7 of the form 7 > t;. When we have a ring
of N pipeline stages, each with a steady-state cycle time of 7 and latency [with one token
flowing through the ring, we have an additional constraint, namely that 7 = [N. We also
have latency constraints of the form [> [y. The optimal cycle time ¢y can be attained when
N = N() = t()/l().

If a ring of pipeline stages in the system does not have Ny stages per token, it will not
operate at the maximum possible throughput. We can increase its throughput by modifying
the number of stages in the ring until we do have Ny stages per token. This can be done in
various ways, including modifying the extent to which a unit in the ring has been pipelined
and explicitly introducing buffer stages in the ring. We call this process of adjusting the
slack on channels to optimize the throughput of the system slack matching[4],[2] .

The pipeline stages used in the MiniMIPS typically have ty, =~ 3.5ns and [y ~ 0.44ns.
Therefore, the optimal cycle time in a ring of these pipeline stages is obtained at Ny =~ 8.

Rings of pipeline stages are present in a number of places in the MiniMIPS. Some of
the critical loops we optimized were the pcunit-fetch-decode loop, the loop through an
execution unit to the register file and back to another execution unit that corresponds
to data-dependent instructions, and the loop in the pipelined cache implementation. For
example, the pcunit-fetch-decode loop contains two tokens; it was optimized to contain 16
pipeline stages so as to operate at 280MHz.

The execution units in the MiniMIPS have different latencies as a result of different
degrees of pipelining, ranging from 1/4th of a cycle for logical operations to over 1 cycle
for a load from data memory. We alternate the use of the result buses to compensate
for this latency variation. Suppose a load from memory is writing its result back on bus

13

Z0. If the following instruction is not data-dependent on it (indeed, the MIPS architecture
specifies that the compiler should guarantee that this is not the case since loads have a one
instruction data-hazard), it can write back its results in parallel on bus Z1. Observe that
interleaving the use of the result buses permits us to tolerate a latency mismatch of upto
one cycle without dropping below peak throughput.

3.4 Slack Elasticity

The high degree of pipelining makes the processor a highly concurrent program, increas-
ing the complexity of the design. As we have seen, increasing the slack on channels can be
used to increase the performance. As we will show, increasing the amount of pipelining in
an asynchronous system can also be thought of as increasing the slack on channels in the
computation.

But increasing the slack on channels can modify the synchronization behavior of the
computation, leading to an incorrect implementation. In this section, we introduce a prop-
erty of the computation, slack elasticity, which is necessary and sufficient to maintain the
correctness of the computation under modification of the slack on channels.

Increasing pipelining in an asynchronous system corresponds to increasing the slack on
a communication channel in the system. For example, suppose we have a single function
computation block described by the following program:

*[L?z; Rlg(f(z)) 1]

If we can increase the slack on communication channel R by 1, we can pipeline the compu-
tation to obtain:

*[L?z; I'f(z) 1 || *[I?7y; Rlg(y)]

As far as the environment of this unit is concerned, the unit reads in values z and computes
g(f(z)); the only thing that has changed is the amount of buffering on the channel R. We
would like to determine the exact conditions under which we can modify the amount of
slack on a channel in an asynchronous computation, since this corresponds to conditions
under which we can increase the amount of pipelining in an asynchronous system.

In a deterministic computation, we can always increase the slack on a communication
channel without affecting correctness. The reason for this is straightforward: the sequence
of sends and receives are predetermined, and adding buffering on a channel doesn’t affect
the result of the computation. The only problem arises when a program probes a channel
to determine whether a communication on the channel can complete, and then performs
different computations depending on the result of the probe. We define a decision point
to be a point in the computation where a program makes such a choice. The detailed
description of this concept is provided in [5]. Decision points correspond to those points in
the system where arbitration is needed. When the computation reaches a decision point,
some unit in the system uses an arbiter to pick between a number of alternatives.

The main result that characterizes when we can increase the amount of slack on a chan-
nel is [5]: Increasing the slack of a channel by 1 does not affect the correctness of the
computation if (and only if) it does not introduce additional decision points in the system.

Computations in which we can add slack without affecting the correctness are said to be
slack elastic. The implementation of the MiniMIPS has only one arbitration device—the
one in the exception-handling mechanism. Therefore, the only decision points that might be
introduced lie in this part of the processor. The arbitration device in the exception handling
mechanism is exercised whenever an exception occurs. Since an exception could potentially

14

be raised by every program counter value, the set of possible points in the computation
where arbitration is necessary cannot be increased. This implies that we can increase the
slack on any communication channel in the system without affecting the correctness of the
resulting design.

Therefore, the design of the MiniMIPS is highly modular—individual execution units
can be pipelined without affecting the correctness of the processor so long as they maintain
their input/output characteristics in terms of the values they compute.

In the next section, we introduce a transformation, pipelined completion, that removes the
delay attached to the completion of a datapath operation. Pipelined completion increases
the slack on communication channels between the control and datapath, and between the
different bits of the datapath. Because of the slack elasticity of the MiniMIPS design, we
can always use pipelined completion in the MiniMIPS datapath.

4 Pipelined Completion

In an asynchronous system, since there is no clock signal, a pipeline stage or functional
unit needs to generate its own “completion signal” to indicate the completion of that stage
and the availability of the result for the next stage. The generation of a completion signal
takes a time proportional to logN, where N is the number of bits of output data. Since
a critical cycle usually contains 2 completion signals, for 32 or 64 bits of output, the
performance of a pipeline including such a mechanism is seriously limited. The completion
detection problem is the cause of the remaining skepticism against asynchronous techniques.

We have solved this problem by pipelining the completion mechanism. The data path
is decomposed into small units—say, 4 bits wide. Each unit generates a completion signal
through a small completion tree that has a small, constant, delay. The collection of all the
unit completion signals is pipelined, and therefore does not appear on any critical cycle.
Now, the completion detection overhead is reduced to a small constant, that of a single unit.
By increasing the pipelining, this method could increase the latency on pipeline stalls, and
therefore requires additional care in the design of the datapath, and the reduction of the
forward latency.

In our current design style, the forward latency of a pipeline stage is only 1/8 of the cycle
time, and, as we explained, the cycle time is decreased by a combination of deep pipelining
and pipelined completion. We think that the frequencies we can obtain with this approach
are very difficult to achieve for clocked designs due to clock frequency limitations. For
example, the latency of a bare pipeline stage in 0.6CMOS is 500 picosecs, which corresponds
to a 2GHz clock frequency. Similarly, the low forward latencies we achieve can be difficult
to match in a clocked design because of the margins required for proper clock operation.

5 Performance Comparisons

We estimate that, at 3.3 V and 75 °C, the MiniMIPS will dissipate 7 W and run at
280 MIPS. At 2.0 V and 75 °C, it will dissipate 1 W and run at 150 MIPS. It should
exceed 300 MIPS at 25 °C. The transistor count is 1.25M for the caches, and 250K for
the datapath and control. The overall floorplan is shown in Figure 4. The gate design
is very conservative: There are no delay assumptions, and all gates are “staticized.” The
transistor count is inflated by the large number of staticizers, and by the fact that long
transistor gates are cut into sections. The power consumption is somewhat higher than we
expected, and breaks down as follows. The pcunit/memory/decode part consumes 3 W;

15

: P e derfadd i i)
multdiv/multdiv mem/mem "= tetchvtetch shift/shift b " eg/reg_32x32

multdiv mem deeode add ook | ghif s
fetch lous reg

cache_4KB/dcache cache_4KBficache

dcache icache

Figure 4. The floorplan for the MiniMIPS

the registers/bus/bypass consumes 3 W; a typical execution unit operation consumes 1 W
as a rough average.

Comparing the performance of the Caltech MiniMIPS to that of existing synchronous
and asynchronous processors is not straightforward. High-performance versions of the
MIPS R3000 do not exist, and high-performance processors fabricated in similar tech-
nologies are quite different. Furthermore, the technologies used in current microprocessor
designs are not always directly comparable to the 0.6 um SCMOS process (Hewlett-Packard
via MOSIS) used for the MiniMIPS. A comparison of the MiniMIPS to the Orion R4600,
the DEC StrongARM, and the AMULET?2 is summarized in the table below.

By MIPS, we mean millions of R3000/R4000 instructions per second for the MiniMIPS
and the Orion. The numbers for the ARM architecture processors (AMULET and Stron-
gARM) refer to their published Dhrystone MIPS figures. Since errors in the performance
are, given P, reflected to the third power in the E72? figures, we caution that E72 fig-
ures really are only comparable between processors that do similar amounts of work per
“operation.”

Processor f.s. 1/ MIPS P word MIPS?/E
pm MHz W size 10211572
MiniMIPS @3.3V 0.6 280 280 7 32 3100
MiniMIPS @2V 0.6 150 150 1 32 3375
AMULET2e 0.5 35 38 0.150 32 365
Orion R4600 0.64 150 150 3.0 64 1125
StrongARM SA110 0.35 200 235 0.9 32 14420

In spite of the huge architectural differences between the MiniMIPS and the DEC Alpha,
it is worth mentioning that the 280 MHz execution rate of the MiniMIPS compares well with
the 300 MHz execution rate of the Digital Alpha 21164 processor in a 0.5 pm technology.
The newer 0.35 pm 21164 demonstrates the power and speed advantages of scaling to about
the same extent that we would expect to see in a scaled MiniMIPS processor.

16

The Digital StrongARM SA110 processor is a low-power commercial microprocessor[11].
At 2.0 V Vdd, a power consumption of about 0.5 W and performance of about 185 MIPS
was expected from the StrongARM. At the same voltage, we expect performances around
150 MIPS and 1 W for the MiniMIPS. We note that the StrongARM currently beats the
MiniMIPS by a factor of three on the E72 metric. To attempt to correct for the difference in
fabrication technology, we can use Digital’s experience in scaling the Alpha 21164 processor,
which indicates that the E72 metric improves by approximately a factor of 9.5 when going
from the old 0.5 pm technology to the newer generation’s 0.35 pm. Assuming the MiniMIPS
would scale similarly, we would achieve twice the performance of the SA110 in the same
manufacturing technology, using the E72 metric.

The Orion R4600 is another low-power commercial microprocessor. Although it contains
a floating-point unit, the precautions taken by the designers to isolate the floating-point
unit when not in use make it possible to compare it to the MiniMIPS on integer code.

The AMULET2e is a current self-timed processor from the University of Manchester. It
was announced in 1996 at a performance of 38 MIPS in 0.5 pm CMOS. The expected per-
formance for the MiniMIPS in a similar technology exceeds the AMULET2e’s performance
by almost an order of magnitude!

6 Conclusion

With a total transistor count of 1.5 million, this project stretches the limit of what a
small research group can (and should?) do in a university environment, especially when
every cell is laid out manually. Yet, we believe an experiment of that scale was necessary
to demonstrate the capability of asynchronous VLSI for high-performance microprocessors.
Assuming that fabrication will confirm the performance estimated by SPICE simulation,
we can draw the following conclusions from the experiment.

Provided that each stage is finely decomposed, asynchronous pipelines can deliver a
throughput at least equivalent—and we believe even superior—to that of the best clocked
designs. Furthermore, the same design, run at the optimal voltage for energy consumption,
compares favorably in terms of energy consumption with the best low-power architectures.

At the circuit level, the challenge was to partition each complex cell into a large collection
of elementary communicating cells. Each cell should be small enough to have only 14 to 18
transitions on a cycle. Yet, the decomposition should not increase the forward latency of the
pipeline stages since that would degrade the throughput of the whole pipeline through the
feedback loops. Not only did the cells have to be designed very carefully, but we also had
to deal with problems related to the pipeline dynamics of the system. A typical example
was the frustrating situation where two cells show significant degradation in throughput
once they are composed together. To deal with pipeline dynamics problems, we introduced
what we call slack-matching techniques.

At the architecture level, we had to invent new solutions for problems like precise excep-
tions, pipelined caches, register allocation and bypassing that would be usable in the context
of a totally distributed system. The structure of the asynchronous pipeline distinguishes
itself from that of a synchronous one by its flexibility, i.e., its automatic adaptation to the
type of instruction being executed, and by the ability to take advantage of data-dependent
execution times.

The requirement of decomposing the whole system into a network of, say, ten thou-
sand communicating cells, required refining and extending our techniques for synthesis by
program decomposition. Starting from a rather simple sequential “seed” program that de-
scribes the whole processor, we were able to decompose it into the final network of cells

17

by the successive application of a surprisingly small number of transformations. In order
to argue that the final program was semantically equivalent to the original one, we had to
introduce a new notion of equivalence: slack elasticity.

In conclusion, the project has been an excellent catalyst and testbed for a new design
method which, we believe, constitutes an order-of-magnitude improvement on the state-
of-the-art in asynchronous design. However, we knew at the start of the project that the
standard RISC instruction set of the MIPS family would not allow us to take full advantage
of the possibilities offered by an asynchronous approach.

Acknowledgments

We wish to thank Marcel van der Goot and Peter Hofstee for their excellent comments
and suggestions, and Cindy Ferrini for her help in the preparation of the manuscript.
Acknowledgement is also due to Marc Renaudin who participated in the design of the
TLB.

The research described in this paper was sponsored by the Defense Advanced Research
Projects Agency, and monitored by the Army Research Office. T. K. Lee is partially
supported by a Direct Grant from the Chinese University of Hong Kong.

References

[1] S.M.Burns and A.J. Martin. Performance Analysis and Optimization of Asynchronous
Circuits. Proceedings Advanced Research in VLSI 1991, ed. C.H. Sequin, MIT Press,
1991.

[2] U.V. Cummings, A.M. Lines, A.J. Martin. An Asynchronous Pipelined Lattice Struc-
ture Filter. Advanced Research in Asynchronous Circuits and Systems, IEEE Computer
Society Press, 1994.

[3] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

[4] Andrew M. Lines. Pipelined Asynchronous Circuits. MS Thesis, Caltech-CS-TR-95-21,
1995.

[5] Rajit Manohar. The Impact of Asynchrony on Computer Architecture. PhD Thesis,
Caltech, In preparation, 1997.

[6] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus. The Design of an
Asynchronous Microprocessor. Decennial Caltech Conference on VLSI, ed. C.L. Seitz,
MIT Press, 351-273, 1989.

[7] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits. Formal Methods for VLSI
Design, ed. J. Staunstrup, North-Holland, 1990.

[8] Alain J. Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits.
Sizth MIT Conference on Advanced Research in VLSI, ed. W.J. Dally, MIT Press,
1990.

[9] Alain J. Martin. Asynchronous Datapaths and the Design of an Asynchronous Adder.
Formal Methods in System Design, 1:1, Kluwer, 117-137, 1992.

[10] Mika Nystrom. Pipelined Asynchronous Cache Design. MS Thesis, Caltech-CS-TR-
97-21, 1997.

[11] S. Santhanam. StrongARM 110: A 160MHz 32b 0.5W CMOS ARM processor. Pro-
ceedings of HotChips VIII, 119-130, 1996.

18

