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Abstract—Wireless Sensor Networks (WSNs)
present a challenging design space for encryption
algorithms. We evaluate hardware, software, and
hybrid implementations, including one of our
own design, of Advanced Encryption Standard
(AES) encryption engines in the context of WSN
microcontrollers. We examine the tradeoffs between
energy, throughput, memory footprint, and sensor
network node lifetime. Our measured results and
models show that our fully Quasi Delay-Insensitive,
asynchronous AES design, combined with a low-power
microcontroller, offers a 60× increase in throughput
at 90× less energy per bit over the commercially
available TI MSP430 AES WSN hardware. Our
hardware AES offers a 30× throughput improvement
over its software counterpart, albeit with reduced
lifetime. By incorporating power gating and providing
dedicated memory resources to the AES engine, hybrid
implementations can provide a 6× better throughput
and increase the lifetime by 10 % over software.

I. Introduction
Wireless Sensor Networks (WSNs) are becoming more

prevalent in a myriad of applications ranging from medical
monitoring devices to industrial control systems. Typical
WSNs are comprised of many small, low cost nodes or
motes that gather, process, and propagate data about
their surrounding environment. Mote deployment lifetime
is often measured in years, so minimizing mote energy
consumption and static power is of great interest.

Aggressive energy reduction at the cost of perfor-
mance is a common engineering tradeoff for mote mi-
crocontrollers. The Atmel 128L-based MICA2 [6] mote is
an example of a relatively high-performance, high-energy
point in the tradeoff space. Smartdust [23] is low-energy
(12 pJ per instruction) and low-performance (500 kHz).
The Phoenix microcontroller is an extreme example, of-
fering 106 kHz at 2.8 pJ per instruction [24]. Recent appli-
cation of asynchronous circuit techniques has improved the
energy-performance tradeoff—ULSNAP is a low-energy,
fully Quasi Delay-Insensitive (QDI) asynchronous mote
microcontroller design that offers 93 MHz of performance
at only 47 pJ per instruction [21].

High-performance mote microcontrollers like ULSNAP
and MICA2 allow more complex computations locally at
the mote, which in turn can reduce the duty cycle of
the energy-hungry wireless communication systems. How-
ever, we must also account for the energy consumption
of encryption, as transmitted information is oftentimes
sensitive and should be encrypted to preserve confiden-
tiality [20]. As of this writing, the Advanced Encryption
Standard (AES) [17] is approved for both non-classified
and classified information by the US Government and has

has become the industry standard for encryption in appli-
cations ranging from SSL to storage media encryption.

Implementing AES in the WSN space is complicated
by the need for a small energy envelope. Typical activity
patterns in the WSN application space are “bursty,” i.e.
long quiescent periods followed by a brief, highly-active
period. Asynchronous circuits are an excellent fit for these
activity patterns as they are event-driven, i.e. completely
idle in the absence of data to compute. This intrinsic clock-
gating-like behavior of idle asynchronous circuits elimi-
nates switching energy during these idle periods without
sacrificing performance.

As energy consumption is a metric of interest for
WSNs, we have developed a model for mote battery life-
time in Section II, which accounts for both the energy of
encryption and idle power. To aid the WSN architect, we
present software, hardware, and hybrid implementations
of AES encryption on WSN microcontrollers, using our
model to evaluate the impact to sensor mote lifetime of
each class of implementation. Our hardware and hybrid
implementations are asynchronous to take full advantage
of the aforementioned energy benefits. Our WSN mote
evaluation platforms are the MSP430 (CC430F6137) [7]
and ULSNAP [21], representing the state-of-the-art in
WSN platforms providing more than 10 MIPS of perfor-
mance in industry and academia, respectively.

II. Mote Lifetime Model
We adapt the model for sensor node lifetime analysis

used in the work of Jung et al. [8] to include the effects
AES encryption on battery lifetime. The model is a semi-
Markov chain formulation of the power state transitions
and satisfies the following properties: ergodicity and Pois-
son distribution of event arrivals. An event arrival could
be the availability of new sensor data, a timer expiring
and forcing the mote to execute a pre-planned action, the
arrival of a command via the radio, etc. We assume the
processing, and transmission times are independent and
identically distributed with an arbitrary distribution.

Figure 1 shows our model for the power states of a
generic cryptographic WSN mote: Sensing (S1), Processing
(S2) and Transmit or TX (S3). The TX state S3 is an
embedded chain of an encryption state, SE , and a data
transmission state, ST . The processing and communication
steps are optimized for throughput and do not enter a
low-energy/low-performance mode when work is available.
α represents the probability of data transmission after
processing. Figure 2 is a sample encryption power trace.
µ1, µ2, and µ3 are the expected averages of sensing time,
processing time, and communication time, respectively.
The event inter-arrival time is 1/λ. We assume that motes
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rarely receive commands or signals, i.e. they are primarily
collecting, processing, and transmitting sensor data. In
a case where WSN designers expect significant receive
traffic, our model could be extended to include a fourth
Receive or RX state. We do not include an RX state here,
as we focus primarily on evaluating our AES encryption
engine, as described in Section III.

For both ULSNAP and the MSP430, state S1 is the
idle state—i.e. it has the lowest activity factor of all states.
In state S1, ULSNAP is effectively clock-gated due to its
QDI circuit implementation [21] and the MSP430 enters
a low-power state. The static power consumption of both
systems is a reasonable proxy for the power consumption
in S1.

Each state Si consumes Ei = tiPi energy, calculated
from the consumption Pi and the total time spent in a state
ti. Of course, Etotal ≥

∑
i Ei. Over a long period, the total

time spent at state Si is given by ti = limt→∞ pit, where pi
is the proportion of time spent in state Si. Therefore, Ei =
pitPi. Let πj be the stationary probability of the Markov
chain, which is the frequency of visiting each state over
an infinite execution. pij is the probability of transitioning
from Si to Sj . πj can be interpreted as the proportion of
transitions into Sj .

πj =
∑
i

πipij ,
∑
j

πj = 1 (1)

The probabilities pij can be obtained from the Markov
chain in Figure 1. The equations can be written in matrix
form, where row indices represent source states and column
indices represent end states:

[π1 π2 π3]

[
0 1 0

1− α 0 α
1 0 0

]
= [π1 π2 π3] (2)

The Markov chain model allows us to express pi as
follows, where µi is the mean time spent in Si before
making a transition—µ1, µ2, and µ3, respectively:

pi =
πiµi∑
j πjµj

(3)

Equation (2) and (3) allow us to re-write Etotal and
extract t as the mote lifetime:

Etotal ≥ t
µ1P1 + µ2P2 + αµ3P3

µ1 + µ2 + αµ3
(4)

tlife ≤ Etotal(µ1 + µ2 + αµ3)

µ1P1 + µ2P2 + αµ3P3
(5)

Assuming that µ1 ≫ µ2, µ3, we approximate the aver-
age sensing time µ1 as the inter-arrival time 1/λ. We also
expand the power state S3 into its embedded Markov chain
of SE and ST , which means that the mean time spent in
S3 can be expressed as the sum of the mean times spent
in SE and ST , i.e. µ3 = TE + TT . We can rewrite (5) as:

tlife(λ) ≤
Etotal(1 + λ(µ2 + α(TT + TE))

P1 + λ(µ2P2 + α(TTPT + TEPE))
(6)

We use (6) in Section IV to compute mote battery
lifetime, a key figure of merit for our evaluation.

III. AES Implementation
AES is a 128-bit block cipher with 128-, 192-, or 256-

bit keys (K). Typically, the blocks are logically organized
into a 4× 4 state matrix of 8-bit elements. A full encryp-
tion/decryption step is comprised of several loop iterations
or rounds—10, 12, or 14 rounds for 128-, 192-, and 256-bit
keys, respectively. Each round does four operations on the
state matrix [17]:

1) Add Key (AK)
2) Byte Substitution (BS)
3) Shift Rows (SR)
4) Mix Columns (MC)

Figure 3a shows a simplified dataflow diagram for
a complete execution of a 128-bit key AES encryption.
The contents of Figure 3a are then wrapped with the
appropriate control structures to implement the desired
cipher mode of operation. There are several choices as to
which cipher-block mode to implement. We chose Cipher-
Block Chaining (CBC) as it is widely used in the WSN
context [9] and the simpler Electronic Code Book (ECB)
is vulnerable to several attacks [18].

Many WSN motes follow a single-threaded execution
model to reduce energy consumption. Thus, for a software
implementation, the cost of ciphering a single block gov-
erns the overall encryption performance for all modes of
operation. There is also the concern of limited memory
space for programs on embedded systems. In CBC mode,
common hardware optimizations such as pipelining are
unattractive in the context of a single encryption because
of the carried loop dependencies. In practice, some degree
of pipelining is still desired to logically separate the various
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stages of encryption, reduce signal fanout, and ease system
design.

While WSN motes can occasionally receive encrypted
commands, we assume this is very infrequent and that
the payload is small. To support decryption, we assume
the existence of a lightweight AES decryption engine in
software. This assumption allowed us to make a number
of optimizations to our hardware AES encryption engine,
as we did not have to support decryption. We note the
optimizations as well as the requirements to support hard-
ware decryption below where applicable.

Figure 3b illustrates our encryption engine hardware
implementation. The unrolled encryption key is stored in
an externally user-writeable SRAM. However, only the AK
process can read the SRAM. SRAM writes and reads are
arbitrated by the Port Access process. While our AES
engine is implemented at the circuit level as a pipelined
system—each box represents a pipeline stage, we treat the
system as an un-pipelined functional unit when doing a
single encryption. The Input Gate process blocks further
inputs until it receives a “done” signal from the Output
process. Although the pipelining of a single message en-
cryption is unattractive due to data dependencies, we can
take advantage of the circuit-level pipelining of our im-
plementation by operating on multiple messages. A small
change to the Input Gate and Output processes allows us
to pipeline encryption of multiple messages by interleaving
the plaintext and ciphertext blocks of each message as
appropriate.

Our AES implementation (AES-QDI) makes use of
the Quasi Delay-Insensitive (QDI) family of asynchronous
circuits. We use Martin Synthesis [12], which breaks apart
a computation into fine-grained hardware processes that
communicate over point-to-point delay insensitive chan-
nels. Instead of using a clock and flip-flops for synchro-
nization and storage, QDI circuits use channel handshakes
for local, inter-process synchronization and represent data
as tokens traversing these channels. In fact, our AES state
matrix is implemented as in-flight data tokens as opposed
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to being stored in a set of registers. The initial state
matrix, i.e. the matrix before the AK step, is input to the
encryption engine as a token stream. Once the encryption
is complete, the ciphertext is obtained by collecting the
output token stream. The overall structure of the state
matrix is implemented by proper connectivity and control
in the mux/demux stages between each AES encryption
step.

QDI hardware processes and the QDI channels them-
selves are robust to arbitrary gate delays. As a result, QDI
circuits are intrinsically tolerant to process, temperature,
and voltage variations. QDI circuits are also naturally
event-driven, waiting in a quiescent state with no switching
activity until a data token arrives. This is the equivalent
of perfect clock-gating in a synchronous system—inactive
processes consume only leakage current. Since encryption
is typically only active during data transmission in the
WSN application space, a QDI implementation effectively
offers instantaneous transitions between wake-up/sleep
states with perfect clock-gating.

Our AES-QDI implementation was synthesized
with PreCharge Half/Full Buffer pipeline templates
(PCeHB/PCeFB) [3,11], which have been widely used in
multiple QDI designs [14]. Each PCeHB/PCeFB stage
implements a function of simple enough complexity
that it can fit into a single nMOS Pull-Down Network,
as shown in Figure 4a. This compilation style yields
high-performance stages with short cycle time and only 2
forward transitions.

The signals L.v and R.v are validity signals calculated
by inspecting the input and output data rails L.d and
R.d, respectively. As the data rails are encoded with a
delay-insensitive protocol, we can obtain validity by in-
specting voltage independent of time. We primarily use the
half-buffer PCeHB templates for computational pipelines.
While these templates are high-performance, implement-
ing reasonably complex functions usually results in a deep
pipeline of PCeHB stages.

As discussed earlier, the carried loop dependencies
inherent in to CBC AES discourage fine-grained pipelin-
ing as it increases overall latency. To avoid an over-
pipelined design, we combined PCeHB templates with
asynchronous function blocks [13], which can be thought
of as the asynchronous analogue to combinational logic in
a clocked pipeline stage. The between-stage handshaking
is still handled by the PCeHB handshaking logic, but the
computation is broken up across the PDN and additional



function blocks placed in series, as seen in Figure 4b.
Validity is calculated after the functional blocks have fin-
ished computation, with the PDN effectively implementing
the first function in the series chain. This reduces the
handshaking overheads and forward latency per pipeline
stage, reducing the overall latency.

To evaluate our design, we performed detailed
transistor-level simulations in SPICE, complete with par-
asitics and conservative wire-loads. Our asynchronous de-
sign flow does not use a traditional ASIC standard cell
flow. We typically generate cells on-demand using CAD
tools such as cellTK [10], which are then place and routed.
Thus, a simulation of a transistor-level SPICE netlist as
described represents a simulation of a completed digital
design. We compare our implementation with state-of-the-
art AES implementations in Section IV-B. We describe the
individual components of the AES system below:

A) Add Key (AK): AK performs a bitwise XOR of each
byte in the state matrix and the corresponding byte of the
current input block. We implemented this block using a
PCeHB template with the XOR encoded in the PDN, as
the complexity of an XOR does not warrant additional
asynchronous functional blocks.

B) Byte Substitution (BS): Each byte of the state ma-
trix transformed by a non-reversible, non-linear function.
In the case of AES, we use a GF (28) Galois Field. Design-
ers typically focus their attention on the BS block as it
uses almost 75 % of the energy required for an encryption.
There are two common ways to implement the BS block:
1) Composite Field Transformation (CFT) or 2) Look-Up
Table (LUT) [4,15].

CFT is oftentimes implemented as multiplicative in-
version followed by an affine transformation. In order to
minimize area and pipeline the circuit, the multiplicative
inversion is performed in an equivalent Galois Field, e.g.
GF ((24)2). This method usually yields small, pipelined
circuits with high propagation delays. The composite field
transformation can be used for both encryption and de-
cryption with minimal changes. CFT-based blocks usually
have high throughput, but the long-forward propagation
delay makes CFT unattractive for many AES implemen-
tations. However, if overall silicon area is limited, as is the
case in some WSN motes, CFT remains a good option.

A LUT encodes the output values for all possible
8-bit input combinations. Possible ways to build this
lookup table include using a Product-of-Sums or Sum-of-
Products (SOP), or by simply implementing a ROM-based
LUT. More advanced techniques include the use of Binary
Decision Diagrams or Twisted Binary Decision Diagrams
(TBDD) [15]. Automated synthesis using commercial tools
typically results in the SOP implementation. A ROM im-
plementation typically has lower propagation delays than
the SOP, but requires a special ROM compiler and double
memory to support both encryption and decryption.

Satoh et al. show that the propagation delay of a BS
stage using CFT is 2190 ps in a 130 nm technology. In
contrast, a table lookup takes 700 ps, but at the cost of
a 4.5x increase on the number of transistors [15]. Satoh et
al. also propose a TBDD solution that reduces the delay
to 430 ps, with a 8x increase in area compared to the
composite field version.

In our 90 nm technology, we implemented both a CFT
and a ROM-based LUT implementation of the BS func-
tion. Our CFT implementation has a pipeline depth of 5
stages, as shown in Figure 5. The prologue transforms the
8-bit vector from a GF (28) to a GF (24)2. The inversion
is performed in this Galois Field and then the epilogue
transforms the resulting 2 nibbles to the GF (28). Each
stage of the CFT-based BS is implemented using PCeHB
buffers combined with asynchronous functional blocks, as
described earlier and as shown in Figure 4b. We simplified
the logic using EXORCISM, a minimization tool for of
Exclusive-Sum-Of-Products (ESOP) expressions [25].
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Fig. 5: Composite Field Transformation Byte Substitution

Our ROM implementation is a 256-row, 8-bit wide
NOR-based ROM array. The architecture of our ROM
is similar to that described by Nystrom et al. [19]. A
ROM access has four stages: 1) receive input, 2) decode
input to address, 3) access ROM at address, 4) transmit
output. While our ROM implementation has 23 % less
throughput than CFT, it has 35 % less propagation delay.
As the AES CBC algorithm is constrained by loop data
dependencies, minimizing delay is a key contributor to
performance. Thus, we used the ROM-based BS for AES
design, discussed in Table IV.

C) Shift Rows (SR): SR implements a cyclic left shift
for encryption on each row of the state matrix. The shift
amount for the nth row is n bytes, indexing from zero. If
supporting both encryption and decryption is required, i.e.
both left and right shifts are necessary, we can compile
SR using PCeHB templates to implement the variable
direction shift. Our AES engine is intended for encryption
so we simply implement the shifting with wires, reducing
the delay and energy to the cost of transmission on wires.

D) Mix Columns (MC): MC applies a column-wise 32-
bit linear transform to the state matrix. Input columns,
denoted a, are treated as a polynomial over GF (28).
They are then multiplied by the fixed polynomial c(x) =
3x3 + x2 + x + 2 modulo x4 + 1 to obtain the output
column, denoted b. This is equivalent to the matrix vector
multiplication shown in (7).

b0b1b2
b3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


a0a1a2
a3

 (7)



Solving for elements of b requires addition operations
as well as multiplication by factors of 2 and 3. Addition
over GF (28) is an XOR and multiplication by 2 is done via
shifting followed by an XOR with a constant. Multiplica-
tion by 3 can be achieved by a multiplication by two and
an XOR addition. Our MC is architecturally similar to [1]
and is implemented with PCeHB templates and 2 cascaded
function blocks, as shown in Figure 6. Implementing MC
for decryption requires multiplication by 9, 11, 13, and 14.
These multiplications are typically implemented as lookup
tables. Implementing only encryption allows us to avoid
the additional overheads of lookup table ROMs.

⊕ ⊕ ⊕ ⊕

a0 a1 a1 a2 a2 a3 a0 a3

2× 2× 2× 2×⊕ ⊕ ⊕ ⊕

a2 a3 a0 a1

⊕ ⊕ ⊕ ⊕
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Fig. 6: Mix Columns

IV. AES Evaluation
In our study, we benchmarked and analyzed software,

hardware, and hybrid AES implementations for two micro-
controllers: the commercially available TI MSP430, version
CC430 [7], and ULSNAP [21]. A similar analysis can be ap-
plied to any other microcontroller platform. The MSP430
provides a completely in-silicon solution for AES, which
serves as a data point for commercial WSN AES hardware.
ULSNAP is a microcontroller design from academia tar-
geted for the WSN space. ULSNAP employs a number of
advanced techniques at both the circuit and microarchitec-
tural levels to improve energy efficiency while maintaining
performance [21]. The MSP430 CPU implements a 16-bit,
single-pipeline Von Neumann architecture with a modern
RISC ISA. ULSNAP is also 16-bit and has a MIPS-like
RISC ISA, but implements a Harvard architecture. While
ULSNAP does not have explicit active power modes, by
changing the operating voltage the user can choose high-
performance and low-power characteristics.

ULSNAP makes use of the QDI family of asynchronous
circuits [21]. That makes ULSNAP robust to systemic and
random variations from manufacturing, temperature and
voltage. The compilation of QDI processes implements the
equivalent of the perfect clock-gated synchronous circuits–
inactive processes consume only leakage current. With
respect to our model described in Section II, we assume
regularly spaced sensor events, each of which has proba-
bility α of causing the transmission of a single encrypted
packet after being processed.

We have access to a number of packaged, functional
90 nm ULSNAP dies. All ULSNAP software implemen-
tation results are measured data from actual on-silicon
executions of compiled code. The TI CC430 is commer-
cially available, so all results which do not involve our

AES implementations are from measurements of a physical
MSP430 device. Results for our AES implementation are
from SPICE simulations of a completed, sized, transistor-
level design netlist annotated with conservative wire and
other parasitic capacitances.

As described in Section III, our transistor-level netlist
is a complete design, ready for place and route and sub-
sequent fabrication. Our SPICE simulation flow is well-
characterized against silicon chips and often returns more
conservative numbers than simulations of extracted layout
and actual die measurements. Results for the hybrid con-
figurations below are a combination of SPICE simulations
and measurements from silicon as appropriate.

The total size of a transmitted packet packet is 133 B
with a payload of 127 B. This payload is the maximum
allowable for a Zigbee packet as defined by the IEEE
802.15.4 standard. The transmission time of a packet,
TT , is set by the transmission rate. We assume that our
motes use the TI-CC1101 transceiver, which offers 500kbps
of bandwidth at 55 mW [26]. Using this transceiver is
a natural fit for the MSP430, and we assume ULSNAP
can be paired with the CC1101 or an equivalent radio.
Transmitting a 133 B packet takes TT = 2.12 ms.

We assume the average processing time for each event
to be µ2 = 1.1 ms, which is the average completion time
for the statistical benchmark set from the SenseBench
suite [16] running on ULSNAP [21]. µ1 and TE are de-
pendent on the event inter-arrival time and AES imple-
mentation, respectively. Note that encrypting the 127 B
payload takes 8 full encryptions, which we have accounted
for in our evaluation below.

A. Software-Only Approach
In order to maximize energy efficiency, programmers

can leverage different processor power modes. The MSP430
implements four active power modes, which offer a tradeoff
between power and performance, and five sleep modes,
which offer a tradeoff between static power and wake
up time. In high performance (HP) active mode, the
MSP430 core consumes 4.5 mA at 2.4 V, which translates
to about 54 nJ per operation. For the MSP430, an opera-
tion equates to a complete instruction execution. When
running in low-energy (LE) active mode, the MSP430
consumes 160 µA/MHz with a minimum voltage of 1.8 V.
The maximum frequency in low-energy mode is 1 MHz for
an energy per instruction of 28 pJ.

ULSNAP does not have discrete power modes but
rather scales performance continuously with operating
voltage due to its QDI circuit implementation [21] and
enters sleep mode automatically once all events have been
processed. At 1.2 V or HP mode, ULSNAP runs at 93 MHz
and draws 3.45 mA—47 pJ per instruction. At 0.95 V or
LE mode, ULSNAP offers 47 MHz at 1.3 mA, or 29 pJ per
instruction on average [21].

Table I shows the power and performance for four
different software implementations of AES running at the
high and low power modes of our test microprocessors. TI-
C and ULSNAP-C are evaluations of the same AES library
written in C compiled for the MSP430 and ULSNAP,
respectively. TI-MSP430 is a Texas Instruments soft-
ware implementation of AES optimized for the MSP430.



TABLE I: AES Software Implementations
Perf. Power Energy MemoryDesign Mode [Mbps] [mW] [nJ/bit] [B]

HP 0.102 10.8 105.4TI-C LE 0.005 0.2 56.1 3441
HP 0.420 10.8 25.3TI-MSP430 LE 0.021 0.2 13.5 1184
HP 1.550 4.1 2.6ULSNAP-C LE 0.786 1.2 1.5 2670
HP 1.850 4.1 2.2ULSNAP-O LE 0.935 1.2 1.3 2664

TABLE II: AES Hardware Implementations
Process EnergyDesign [nm] Perf. Latency [pJ/bit]

[1,2] 130 141 Mbps 910 ns 79
[27] @ 1.5V 130 23 Mbps 5.6 µs 81
[27] @ 1.0V 130 8.1 Mbps 15.4 µs 43
[4] @ 3.30V 350 9.9 Mbps 12.9 µs –
[4] @ 0.65V 350 12.8 kbps 10.3 ms 55000
[28] 180 1.6 Gbps 80 ns 300
[15] 130 10.0 Gbps 11.3 ns 191

MSP430 [7] – 15.0 Mbps 8.5 µs 717
AES-QDI(ours) 180 907 Mbps 138 ns 34
AES-QDI(ours) 90 948 Mbps 135 ns 8

ULSNAP-O is an optimized software implementation of
AES written by the designers of ULSNAP.

In general, software implementations on ULSNAP per-
form better than their MSP430 counterparts. For instance,
the optimized TI library provides a maximum throughput
of 0.42 Mbps. The ULSNAP core quadruples the MSP430
performance to 1.85 Mbps while using 10x less energy. On
the other hand, the ULSNAP microcontroller uses much
more memory than the TI implementations. This is mostly
due to the differences in memory architecture—ULSNAP
is word-aligned (16-bits) while the MSP430 allows for byte-
aligned memory access.

B. Hardware-Only Approach
We define a “hardware approach” as any implementa-

tion of AES as a specialized ASIC or transistor-level co-
processor. The plaintext and unrolled key are transferred
to this coprocessor and the ciphertext is returned, often-
times freeing the main processor to engage in another task.

We augmented ULSNAP with an AES transistor-
level implementation optimized for minimizing energy.
The results in Table II come from transistor-level SPICE
simulations which include wiring capacitance. We imple-
mented our AES system in an 180 nm high-performance
process and an 90 nm low-power process to match UL-
SNAP [21]. The static power consumption of ULSNAP-
AES is 7.54 µW and 17.3 µW for the 180 nm and 90 nm
versions, respectively. The low-power 90 nm process allows
a similar performance to the 180 nm version at a reduced
energy.

While we cannot compare all AES implementations,
we show the reported numbers for the best-in-class im-
plementations in Table II and Table IV. Figure 7 shows
a comparison of state-of-the-art implementations on the
energy-throughput space. Our implementation and the one
implemented by Satoh [15] are in the energy/throughput
Pareto optimal set of these implementations. It is worth
noting that the implementations in [1,2,27] are also QDI
and thus benefit from robustness to delay and perfect
clock-gating-like behavior. While [1,2] share similar archi-
tecture and circuits with our implementation, our design
is faster and more energy efficient. We attribute this
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TABLE III: ULSNAP Software AES Blocks

Delay Energy MemoryBlock Mode [µs] [pJ/bit] [B]
HP 3.30 106.82AK LE 6.54 63.05 452
HP 1.25 40.55SUB LE 2.48 23.94 1058
HP 3.88 125.62MC LE 7.68 74.15 552
HP 2.14 69.24MEM LE 4.24 40.87 40

primarily to: 1) the low latency of our BS block, 2) our
non-standard-cell-based synthesis method, 3) transistor
sizing for performance, 4) our SRAM-based round key
manager. On the other hand [1,2] claim balanced layout
paths resistant to differential power analysis attacks, but
no assurance of the safety of the device is given. Their
design is also based on a commercial IP library, hence
it can be optimized further in the Energy-Performance
space. Our numbers for their design are from the instance
described in their datasheet [27].

Table II also includes the MSP430’s hardware imple-
mentation of AES. Our measurements indicate that the
Processing step (S2) takes 170 clock cycles, delivering
15.05 Mbps. However, an extra 140 clock cycles are re-
quired to load the plaintext into the encryption unit, set
the coprocessor interrupts, and retrieve the data from the
AES coprocessor, so the net performance is 8.5 Mbps.

C. Hybrid Approach
We partitioned the AES system into four parts, each of

which can be implemented in either hardware of software:
Loop Control (Ctrl), Add Key (AK), Byte Substitution
and Shift Rows (BS), and Mix Columns (MC). We com-
bined Byte Substitution and Shift Rows as a logical step as
they are always executed sequentially, as seen in Figure 3b.

Table V enumerates all possible hybrid configurations.
Note that Ctrl is only implemented in hardware if AK,
BS, and MC are also hardware. For all software blocks
we used the same AES library as used earlier. All of the
ULSNAP configurations are evaluated in the 90 nm low-
power process discussed earlier. Per-block measurements
for both software and hardware ULSNAP implementations
are available in Table III and Table IV, respectively. As we
do not have detailed access to the netlist of the MSP430’s
AES implementation, we substitute our AES hardware im-
plementation where appropriate for the following analysis
of the MSP430.



TABLE IV: Hardware AES-QDI Blocks
Perf. Energy Txr Delay PstaticBlock [MHz] [pJ/bit] [×1000] [ns] [µW]

AK 370 0.140 28.65 0.21 0.47
MC 281 0.136 14.57 0.57 0.80
BS - ROM 155 0.351 7.45 3.54 0.84
BS - CFT 192 0.750 5.49 4.83 †0.29
Ctrl/Key SRAM 107.7 11.30

†: Encryption and Decryption

We augment our model from Section II by defining Thyb
as the block encryption time of our hybrid system. Tload,
as seen in (8), is the time to load data into the accelerator,
which we assume is similar to the cost of accessing memory.
TAK , TBS , and TMC are the execution times for the AK,
BS, and MC units, respectively. The coefficients below
represent the total number of executions of each unit for
a complete encryption, including the load time Tload:

Thyb = 10Tload + 11TAK + 10TBS + 9TMC (8)
Thw = Tload + TE (9)

THSH = 10Tload + Thyb (10)

The differences between the hybrid execution time in
(8) and the hardware execution time in (9) are as follows:
A full hardware implementation needs a single access to
the encryption data whereas a hybrid implementation
must effectively access ten times by transferring data
between the hardware and software blocks. TE accounts
for the double encryption necessary to send a 29 B packet.
If AK and MC are implemented in hardware but BS
is implemented in software, we incur an additional ten
memory accesses as we need to retrieve the data twice, as
shown in (10). We refer to this combination as “hardware-
software-hardware (HSH).”

Table V lists our estimated performance and lifetime
numbers for hybrid implementations of AES on ULSNAP
and the MSP430, using our hybrid AES implementations
alongside both processors. The throughput was calculated
by adding the delay of blocks from Table III and Ta-
ble IV as appropriate. As a validation of our estimates,
the software only approach in Table V, configuration 8,
matches the measured result in Table I (ULSNAP-C) to
within 1 %. Similarly, the software only approach of the
MSP430 matches the (TI-C) result from Table I. The TI-
C software implementation fuses the AK and BS steps, so
we did not evaluate hybrid combinations of AK and BS on
the MSP430.

tlife in Table V is an estimate of mote battery life from
our model, assuming an inter-arrival rate of 1/λ = 1 min.
The static power consumed in state S1 accounts for that
of the microcontroller as well as that of any hardware-
implemented blocks, as estimated in Table IV.

Our full-hardware implementation is roughly 180k
transistors, effectively 30 % of the reported 592k transis-
tors comprising ULSNAP [21]. We assume that the BS
computation is parallelized and requires four S-box. The
Ctrl unit is roughly double the size of the sum total of all
individual blocks. Table V shows an all-hardware imple-
mentation offers the best throughput. Moving to software-
based control of the hardware results in a 10x penalty
to throughput. However, a full-hardware implementation
also has the lowest mote lifetime as the static power
consumption from the additional transistors dominates
due to the long idle time.
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(b) Lifetime with Power Gating
Fig. 8: ULSNAP Lifetime
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Fig. 9: ULSNAP Lifetime with Memory Overheads

Figure 8a shows the lifetime of various hybrid AES
configurations alongside ULSNAP as function of the event
inter-arrival time (1/λ). For 1/λ < 4 s, the hybrid schemes
offer better performance than a software-only implemen-
tation with little or no impact in the lifetime of the mote.
In contrast, for sparse events tlife is governed by the static
power. For inter-arrival times greater than 5 minutes,
Figure 8a shows a gap in excess of 3x between the hybrid
and software counterparts.

The simple addition of power-gating cut-off transistors
in QDI circuits reduces idle power consumption. We sized
the sleep transistors to reduce static power consumption
by an average of 80 % with an average of 20 % performance
degradation [22]. This is particularly beneficial for the
full-hardware configuration. Incorporating these estimated
power gating savings provides 50- to 100-percent improve-
ment in mote lifetime for sparse arrival times, as seen in
Figure 8b.

Figure 8a and Figure 8b assume that the software
portions of the hybrid AES implementations share memory
with the host microprocessor. Adding dedicated memory
for the AES unit to alleviate memory contention with
the host processor results in Figure 9, assuming 120 pA of
leakage current per SRAM bitcell [5]. In this scenario, the
hybrid modes actually offer the best lifetime. The static
power of the dedicated memory for the software-only mode
increases to the point that the software-only lifetime is only



TABLE V: Hybrid AES Implementations
ULSNAP MSP430

Perf. tlife
† Memory Perf. tlife

† TxrsCtrl AK BS MC [Mbps] [days] [B] [Mbps] [days] [×1000]
0 H H H H 57.02 164 40 20.05 160 180.70
1 S H H H 6.05 286 40 2.05 273 73.02
2 S H H S 2.27 302 592 0.49 398 58.5
3 S H S H 2.35 369 1098 - - 43.2
4 S H S S 1.87 396 1650 - - 28.6
5 S S H H 2.24 323 492 - - 44.4
6 S S H S 1.39 343 1044 - - 29.8
7 S S S H 1.85 434 1550 0.11 559 14.6
8 S S S S 1.54 471 2102 0.10 603 0.0

†: We assume that 1/λ = 1 min, Y = 1.1 ms, TT = 2.2 ms, α = 0.1, and that we are using a 35 mA h, 3 V CR1220 battery.

10 % better than the all-hardware configuration.

V. Conclusion
We have presented a study of AES encryption engines

in the WSN design space. We developed a WSN mote
battery lifetime model that accounts for the energy re-
quired to process, encrypt, and transmit collected data as
well as the energy consumption during idle periods. We
use this model to evaluate software, hardware, and hybrid
implementations of AES on the MSP430 microprocessors
as well as the ULSNAP microprocessor.

A complete QDI asynchronous transistor-level imple-
mentation of AES on ULSNAP, itself QDI, delivers 60×
more throughput at 90× less energy per bit than the AES
hardware implementation on an MSP430. The ULSNAP
AES implementation also offers 30× net performance im-
provement over its software counterpart, but significantly
lowers mote lifetime due to high static power consumption
in the additional transistors. A software-only AES imple-
mentation can offer 3× increase in mote battery lifetime
over hardware. We incorporate power gating techniques
into our hybrid and full hardware designs, which reduces
the gap in battery life between full software and full
hardware implementations to less than 66 %. The addition
of dedicated memory resources for AES increases leakage
current to the point where a fully software implementation
is only 10 % better than a hardware implementation,
while a hybrid implementation gives 6× net performance
improvement, and increases the lifetime by 10 % over its
full software counterpart.

The lifetime of motes is heavily affected by the en-
ergy consumption during the idle phase of computation.
While hardware implementations can offer significant per-
formance gains, even with power gating a software-only
implementation may be more appropriate depending on
mote lifetime requirements. In the case where memory
contention between encryption and other processor tasks is
an issue, hybrid AES engines offer a lifetime improvements
over an entirely software solution. Nevertheless, hybrid
hardware/software AES implementations are both flexible
and feasible, offering a number of options to the WSN
designer.
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